Sr isotope geochemical study of geothermal water and rocks from a newly drilled well for geothermal power generation and hot spring waters in the Okuhida Hot Spring, Gifu, Japan

Geothermics ◽  
2021 ◽  
Vol 91 ◽  
pp. 102018
Author(s):  
Reona Isaji ◽  
Osamu Okano ◽  
Tomoyuki Ohtani ◽  
Eriko Takagi ◽  
Yusuke Sugihara ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
pp. 820-834
Author(s):  
Jun Ma ◽  
Zhifang Zhou

Abstract The exploration of the origin of hot spring is the basis of its development and utilization. There are many low-medium temperature hot springs in Nanjing and its surrounding karst landform areas, such as the Tangshan, Tangquan, Lunshan, and Xiangquan hot springs. This article discusses the origin characters of the Lunshan hot spring with geological condition analysis, hydrogeochemical data, and isotope data. The results show that the hot water is SO4–Ca type in Lunshan area, and the cation content of SO4 is high, which are related to the deep hydrogeological conditions of the circulation in the limestone. Carbonate and anhydrite dissolutions occur in the groundwater circulation process, and they also dominate the water–rock interaction processes in the geothermal reservoir of Lunshan. The hot water rising channels are deeply affected by the NW and SN faults. Schematic diagrams of the conceptual model of the geothermal water circulation in Lunshan are plotted. The origin of Tangshan, Tangquan, and Xiangquan hot springs are similar to the Lunshan hot spring. In general, the geothermal water in karst landforms around Nanjing mainly runs through the carbonate rock area and is exposed near the core of the anticlinal structure of karst strata, forming SO4–Ca/SO4–Ca–Mg type hot spring with the water temperature less than 60°C. The characters of the hot springs around Nanjing are similar, which are helpful for the further research, development, and management of the geothermal water resources in this region.


2015 ◽  
Vol 36 (2) ◽  
pp. 75-84
Author(s):  
Yan-Na Liu ◽  
Song Xiao

AbstractIn this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.


Geothermics ◽  
2021 ◽  
Vol 96 ◽  
pp. 102203
Author(s):  
Motoaki Morita ◽  
Ayumu Yamaguchi ◽  
Sota Koyama ◽  
Shinichi Motoda

1993 ◽  
Vol 81 (3) ◽  
pp. 434-448 ◽  
Author(s):  
G.W. Braun ◽  
H.K. McCluer

2016 ◽  
Vol 42 (2) ◽  
pp. 76-82
Author(s):  
Akira Saito ◽  
Yuta Sasaki ◽  
Kazuhide Kimbara ◽  
Masao Sudou

Energy ◽  
1999 ◽  
Vol 24 (6) ◽  
pp. 501-509 ◽  
Author(s):  
Mehmet Kanoğlu ◽  
Yunus A Çengel

2007 ◽  
Vol 11 (3) ◽  
pp. 135-142 ◽  
Author(s):  
Aleksandra Borsukiewicz-Gozdur ◽  
Wladyslaw Nowak

In the work presented are the results of investigations regarding the effectiveness of operation of power plant fed by geothermal water with the flow rate of 100, 150, and 200 m3/h and temperatures of 70, 80, and 90 ?C, i. e. geothermal water with the parameters available in some towns of West Pomeranian region as well as in Stargard Szczecinski (86.4 ?C), Poland. The results of calculations regard the system of geothermal power plant with possibility of utilization of heat for technological purposes. Analyzed are possibilities of application of different working fluids with respect to the most efficient utilization of geothermal energy. .


Sign in / Sign up

Export Citation Format

Share Document