Fluid inclusions, H-O, S, Pb, and noble gas isotope studies of the Baiyun gold deposit in the Qingchengzi orefield, NE China

2019 ◽  
Vol 200 ◽  
pp. 37-53 ◽  
Author(s):  
Peng Zhang ◽  
Lin-Lin Kou ◽  
Yan Zhao ◽  
Zhong-Wei Bi ◽  
De-Ming Sha ◽  
...  
2017 ◽  
Vol 88 ◽  
pp. 304-316 ◽  
Author(s):  
Liangliang Ke ◽  
Hongyu Zhang ◽  
Jiajun Liu ◽  
Degao Zhai ◽  
Donghang Guo ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Shun-Da Li ◽  
Chuan Chen ◽  
Ling-Ling Gao ◽  
Fang Xia ◽  
Xue-Bing Zhang ◽  
...  

The Jinba gold deposit is located in the Maerkakuli Shear Zone of the south Altay Orogenic Belt, NW China. Mineralization types are classified as altered rock–and quartz vein–type. Orebodies occur as veins or lenses controlled by NW–trending faults, and are hosted in phyllite (Early–Middle Devonian Ashele Formation) and plagiogranite (Early Devonian Habahe Pluton). Three paragenetic stages were identified: early quartz–pyrite–gold (Stage 1), middle quartz–chalcopyrite (Stage 2), and late calcite–quartz–galena–sphalerite (Stage 3). Fluid inclusions within the deposit are liquid–rich aqueous (LV–type), vapor–rich aqueous (VL–type), carbonic–aqueous (LC–type), and purely carbonic (C–type) FIs. Homogenization temperatures for stages 1–3 FIs were 373–406 °C, 315–345 °C, and 237–265 °C, respectively. Fluid salinities for stages 1–3 were 2.1–13.6 wt%, 3.2–6.1 wt% and 3.9–6.0 wt% NaCl equivalent, respectively. The ore–forming fluids evolved from a CO2–NaCl–H2O ± CH4 to a NaCl–H2O system from stage 1–3. Oxygen, hydrogen, and carbon isotopic data (δ18Ofluid = 1.7‰–8.1‰, δDfluid = –104.1‰ to –91.7‰, δ13Cfluid = –0.4‰–6.3‰) indicate that ore–forming fluids were metamorphic hydrothermal origin with the addition of a late meteoric fluid. Sulfur and lead isotope data for pyrite (δ34Spy = 3.3‰–5.3‰, 206Pb/204Pb = 17.912.3–18.495, 207Pb/204Pb = 15.564–15.590, 208Pb/204Pb = 37.813–38.422) show that the ore–forming materials were mainly derived from diorite and the Ashele Formation. Mineralization, FIs, and isotope studies demonstrate that the Jinba deposit is an orogenic gold deposit.


2020 ◽  
Vol 11 (2) ◽  
pp. 547-563 ◽  
Author(s):  
Peng Zhang ◽  
Linlin Kou ◽  
Yan Zhao ◽  
Zhongwei Bi ◽  
Deming Sha ◽  
...  

2016 ◽  
Vol 52 (6) ◽  
pp. 992-1008 ◽  
Author(s):  
Liang Li ◽  
Jinggui Sun ◽  
Lanjing Men ◽  
Peng Chai

Sign in / Sign up

Export Citation Format

Share Document