Ore genesis of the Baiyun gold deposit in Liaoning province, NE China: constraints from fluid inclusions and zircon U–Pb ages

2019 ◽  
Vol 12 (9) ◽  
Author(s):  
Guotao Sun ◽  
Qingdong Zeng ◽  
Taiyang Li ◽  
An Li ◽  
Enyuan Wang ◽  
...  
2019 ◽  
Vol 200 ◽  
pp. 37-53 ◽  
Author(s):  
Peng Zhang ◽  
Lin-Lin Kou ◽  
Yan Zhao ◽  
Zhong-Wei Bi ◽  
De-Ming Sha ◽  
...  

2019 ◽  
Vol 113 ◽  
pp. 103074 ◽  
Author(s):  
Mao-Wen Yuan ◽  
Lin Li ◽  
Sheng-Rong Li ◽  
Cheng-Lu Li ◽  
M. Santosh ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 240
Author(s):  
Vsevolod Yu. Prokofiev

Fluid inclusions provide valuable information on the composition and physical and chemical parameters of mineral-forming hydrothermal fluids [...]


2020 ◽  
Vol 11 (2) ◽  
pp. 547-563 ◽  
Author(s):  
Peng Zhang ◽  
Linlin Kou ◽  
Yan Zhao ◽  
Zhongwei Bi ◽  
Deming Sha ◽  
...  

2016 ◽  
Vol 52 (6) ◽  
pp. 992-1008 ◽  
Author(s):  
Liang Li ◽  
Jinggui Sun ◽  
Lanjing Men ◽  
Peng Chai

2020 ◽  
Vol 57 (3) ◽  
pp. 307-330 ◽  
Author(s):  
Xihui Cheng ◽  
Jiuhua Xu ◽  
Fuquan Yang ◽  
Guorui Zhang ◽  
Hui Zhang ◽  
...  

The Wulong lode gold deposit is located in the Liaoning Province, northeast part of North China Craton. Gold ore bodies are mainly hosted in the Late Jurassic granite and structurally controlled by northeast-trending faults. Gold occurs in disseminated and auriferous quartz–sulfide veins and veinlets within hydrothermally altered rocks. Mineralization can be divided into three stages: (1) quartz–pyrite stage, (2) quartz–polymetallic sulfides stage, and (3) quartz–carbonate stage. Gold formed mainly in the middle stage. Quartz formed in the two earlier stages contains three compositional types of fluid inclusions, i.e., pure CO2, CO2–H2O and NaCl–H2O, but the late-stage minerals only contain NaCl–H2O inclusions. The inclusions in quartz formed in the early, main, and late stages yield total homogenization temperatures of 317–383 °C, 260–380 °C and 159–234 °C, respectively, with salinities of 5.14–9.44, 2.95–6.20, 1.23–4.34 wt% NaCl equivalent, respectively. Trapping pressures estimated from CO2–H2O inclusions are 200–390 MPa in the main stage. Fluid boiling and immiscibility caused rapid precipitation of sulfides and gold. Through immiscibility and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from magmatic to meteoric, as indicated by δ18Owater values (4.5‰–7.3‰). The carbon (−12.2‰ to −11.5‰), sulfur (0.9‰–2.6‰), and lead isotope (207Pb/204Pb of 15.606–15.618) compositions suggest the host rocks to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, fluid inclusion, and C–H–O–S–Pb isotope geochemistry, we conclude that the Wulong deposit is a decratonization gold deposit formed during lithospheric thinning associated with destruction of the North China Craton triggered by the subduction of the Paleo-Pacific Oceanic plate in the Early Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document