Tu1142 Marginal Increase in Dysplasia Detection and Very High False Positive Rate for Volumetric Laser Endomicroscopy in Barrett's Esophagus: Systemic Review and Meta-Analysis

2017 ◽  
Vol 85 (5) ◽  
pp. AB554 ◽  
Author(s):  
Bashar J. Qumseya ◽  
Sherif Gendy ◽  
Yazen Qumsiyeh ◽  
Paul Bain ◽  
Amira Qumseya ◽  
...  
2019 ◽  
Author(s):  
Amanda Kvarven ◽  
Eirik Strømland ◽  
Magnus Johannesson

Andrews & Kasy (2019) propose an approach for adjusting effect sizes in meta-analysis for publication bias. We use the Andrews-Kasy estimator to adjust the result of 15 meta-analyses and compare the adjusted results to 15 large-scale multiple labs replication studies estimating the same effects. The pre-registered replications provide precisely estimated effect sizes, which do not suffer from publication bias. The Andrews-Kasy approach leads to a moderate reduction of the inflated effect sizes in the meta-analyses. However, the approach still overestimates effect sizes by a factor of about two or more and has an estimated false positive rate of between 57% and 100%.


2018 ◽  
Author(s):  
Qianying Wang ◽  
Jing Liao ◽  
Kaitlyn Hair ◽  
Alexandra Bannach-Brown ◽  
Zsanett Bahor ◽  
...  

AbstractBackgroundMeta-analysis is increasingly used to summarise the findings identified in systematic reviews of animal studies modelling human disease. Such reviews typically identify a large number of individually small studies, testing efficacy under a variety of conditions. This leads to substantial heterogeneity, and identifying potential sources of this heterogeneity is an important function of such analyses. However, the statistical performance of different approaches (normalised compared with standardised mean difference estimates of effect size; stratified meta-analysis compared with meta-regression) is not known.MethodsUsing data from 3116 experiments in focal cerebral ischaemia to construct a linear model predicting observed improvement in outcome contingent on 25 independent variables. We used stochastic simulation to attribute these variables to simulated studies according to their prevalence. To ascertain the ability to detect an effect of a given variable we introduced in addition this “variable of interest” of given prevalence and effect. To establish any impact of a latent variable on the apparent influence of the variable of interest we also introduced a “latent confounding variable” with given prevalence and effect, and allowed the prevalence of the variable of interest to be different in the presence and absence of the latent variable.ResultsGenerally, the normalised mean difference (NMD) approach had higher statistical power than the standardised mean difference (SMD) approach. Even when the effect size and the number of studies contributing to the meta-analysis was small, there was good statistical power to detect the overall effect, with a low false positive rate. For detecting an effect of the variable of interest, stratified meta-analysis was associated with a substantial false positive rate with NMD estimates of effect size, while using an SMD estimate of effect size had very low statistical power. Univariate and multivariable meta-regression performed substantially better, with low false positive rate for both NMD and SMD approaches; power was higher for NMD than for SMD. The presence or absence of a latent confounding variables only introduced an apparent effect of the variable of interest when there was substantial asymmetry in the prevalence of the variable of interest in the presence or absence of the confounding variable.ConclusionsIn meta-analysis of data from animal studies, NMD estimates of effect size should be used in preference to SMD estimates, and meta-regression should, where possible, be chosen over stratified meta-analysis. The power to detect the influence of the variable of interest depends on the effect of the variable of interest and its prevalence, but unless effects are very large adequate power is only achieved once at least 100 experiments are included in the meta-analysis.


2020 ◽  
Vol 30 (12) ◽  
pp. 1851-1855
Author(s):  
Sruti Rao ◽  
M. B. Goens ◽  
Orrin B. Myers ◽  
Emilie A. Sebesta

AbstractAim:To determine the false-positive rate of pulse oximetry screening at moderate altitude, presumed to be elevated compared with sea level values and assess change in false-positive rate with time.Methods:We retrospectively analysed 3548 infants in the newborn nursery in Albuquerque, New Mexico, (elevation 5400 ft) from July 2012 to October 2013. Universal pulse oximetry screening guidelines were employed after 24 hours of life but before discharge. Newborn babies between 36 and 36 6/7 weeks of gestation, weighing >2 kg and babies >37 weeks weighing >1.7 kg were included in the study. Log-binomial regression was used to assess change in the probability of false positives over time.Results:Of the 3548 patients analysed, there was one true positive with a posteriorly-malaligned ventricular septal defect and an interrupted aortic arch. Of the 93 false positives, the mean pre- and post-ductal saturations were lower, 92 and 90%, respectively. The false-positive rate before April 2013 was 3.5% and after April 2013, decreased to 1.5%. There was a significant decrease in false-positive rate (p = 0.003, slope coefficient = −0.082, standard error of coefficient = 0.023) with the relative risk of a false positive decreasing at 0.92 (95% CI 0.88–0.97) per month.Conclusion:This is the first study in Albuquerque, New Mexico, reporting a high false-positive rate of 1.5% at moderate altitude at the end of the study in comparison to the false-positive rate of 0.035% at sea level. Implementation of the nationally recommended universal pulse oximetry screening was associated with a high false-positive rate in the initial period, thought to be from the combination of both learning curve and altitude. After the initial decline, it remained steadily elevated above sea level, indicating the dominant effect of moderate altitude.


BMJ ◽  
1995 ◽  
Vol 310 (6975) ◽  
pp. 327-328 ◽  
Author(s):  
J. Bendig ◽  
V. Meurisse ◽  
S. Chambers

Sign in / Sign up

Export Citation Format

Share Document