A 400-year tree-ring δ18O chronology for the southeastern Tibetan Plateau: Implications for inferring variations of the regional hydroclimate

2013 ◽  
Vol 104 ◽  
pp. 23-33 ◽  
Author(s):  
Xiaohong Liu ◽  
Xiaomin Zeng ◽  
Steven W. Leavitt ◽  
Wenzhi Wang ◽  
Wenling An ◽  
...  
2021 ◽  
Vol 17 (6) ◽  
pp. 2381-2392
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Fanjiang Zeng ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree rings serve as proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of hemlock forest (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP) and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growing season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of hemlock forests in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from 1600–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period of 1956–2005. Based on the reconstruction, NGS was extremely dry during the years 1656, 1694, 1703, 1736, 1897, 1907, 1943, 1982 and 1999. In contrast, the NGS was extremely wet during the years 1627, 1638, 1654, 1832, 1834–1835 and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions of early growing season from surrounding regions indicated the reliability of the present reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP. Our study provides the first historical NGS precipitation reconstruction in the SETP which enriches the understanding of the long-term climate variability of this region. The NGS precipitation showed slightly increasing trend during the last decade which might accelerate regional hemlock forest growth.


2020 ◽  
pp. 1-9
Author(s):  
Chenxi Xu ◽  
Haifeng Zhu ◽  
S.-Y. Simon Wang ◽  
Feng Shi ◽  
Wenling An ◽  
...  

Abstract We present a long-term seasonal tree ring cellulose oxygen isotope (δ18Oc) time series created by analyzing four segments (S1, S2, S3, and S4) per year during the period of 1951–2009 from southeastern Tibetan Plateau. This intraseasonal δ18Oc reveals the onset and mature phase of the summer monsoon precipitation in this region. Analysis indicates that the δ18Oc of S1 has the strongest correlation with precipitation during the regional monsoon onset (29–33 pentads, May 21–June 10, r = −0.69), and the δ18Oc values for S2, S3, and S4 correlate strongly with June, July, and August precipitation, respectively. Combined δ18Oc of S2, S3, and S4 shows the most robust correlation (r = −0.82) with the mature-phase monsoon precipitation (June-July-August, JJA), passing rigorous statistical tests for calibration and verification in dendroclimatology. These results demonstrate the feasibility in using long-term intraseasonal δ18Oc to reconstruct the Asian summer monsoon's intraseasonal variations.


2021 ◽  
Vol 251 ◽  
pp. 106712
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Guohua Liu ◽  
Bojie Fu ◽  
Zexin Fan ◽  
...  

Boreas ◽  
2013 ◽  
Vol 43 (3) ◽  
pp. 588-599 ◽  
Author(s):  
Xiaomin Zeng ◽  
Xiaohong Liu ◽  
Wenzhi Wang ◽  
Guobao Xu ◽  
Wenling An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document