scholarly journals A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau

2021 ◽  
Vol 17 (6) ◽  
pp. 2381-2392
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Fanjiang Zeng ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree rings serve as proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of hemlock forest (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP) and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growing season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of hemlock forests in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from 1600–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period of 1956–2005. Based on the reconstruction, NGS was extremely dry during the years 1656, 1694, 1703, 1736, 1897, 1907, 1943, 1982 and 1999. In contrast, the NGS was extremely wet during the years 1627, 1638, 1654, 1832, 1834–1835 and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions of early growing season from surrounding regions indicated the reliability of the present reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP. Our study provides the first historical NGS precipitation reconstruction in the SETP which enriches the understanding of the long-term climate variability of this region. The NGS precipitation showed slightly increasing trend during the last decade which might accelerate regional hemlock forest growth.

2021 ◽  
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Weiliang Chen ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree-rings serve as a proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of forest hemlock (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP), and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growth season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of forest hemlock in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from A.D. 1475–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period 1956–2005, and the leave-one-out verification parameters indicated the reliability of the reconstruction. Based on the reconstruction, NGS was extremely dry during the years A.D. 1475, 1656, 1670, 1694, 1703, 1736, 1897, 1907, 1943, 1969, 1982, and 1999. In contrast, the NGS was extremely wet during the years A.D. 1491, 1536, 1558, 1627, 1638, 1654, 1832, 1834–1835, and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions from surrounding regions indicated the reliability of the reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP.


2017 ◽  
Author(s):  
Lixin Lyu ◽  
Susanne Suvanto ◽  
Pekka Nöjd ◽  
Helena M. Henttonen ◽  
Harri Mäkinen ◽  
...  

Abstract. Latitudinal and altitudinal gradients can be utilized to forecast the impacts of climate changes on forests. To improve the understanding of forest dynamics on these gradients, we tested two hypotheses: (1) the change in the tree growth-climate relationship is similar along both latitudinal and altitudinal gradients, and (2) the time periods during which climate affects growth the most occur later towards higher latitudes and altitudes. We used tree-ring data from a latitudinal gradient in Finland and two altitudinal gradients on the Tibetan Plateau. We analysed the latitudinal and altitudinal growth patterns in tree-rings and investigated the growth-climate relationships of trees by correlating ring-width index chronologies with climate variables calculated with flexible time-windows, using daily-resolution climate data. The high latitude and altitude plots showed higher correlations between the tree-ring chronologies and growing season temperature. However, the effects of winter temperature showed differing patterns for the gradients. The timing of highest correlation with summer temperatures in southern sites was approximately one month ahead of the northern sites in the latitudinal gradient. In one out of the two altitudinal gradients the timing of strongest negative correlation with summer temperatures at low altitude sites was ahead of the treeline sites, possibly due to differences in moisture limitation. Mean values and the standard deviation of tree-ring width was found to increase with increasing mean summer temperatures on both types of gradients. Our results showed similarities of tree growth responses to growing season temperature between latitudinal and altitudinal gradients. However, differences in climate-growth relationships were also found between the gradients, due to differences in other factors, such as moisture conditions. Changes in the timing of the most critical climate variables demonstrated the need to use daily resolution climate data in studies on environmental gradients.


2021 ◽  
Author(s):  
Marina Fonti ◽  
Olga Churakova (Sidorova) ◽  
Ivan Tychkov

<p>Air temperature increase and change in precipitation regime have a significant impact on northern forests leading to the ambiguous consequences due to the complex interaction between the ecosystem plant components and permafrost. One of the major interests in such circumstances is to understand how tree growth of the main forest species of the Siberian North will change under altering climatic conditions. In this work, we applied the process-based Vaganov-Shashkin model (VS - model) of tree growth in order to estimate the daily impact of climatic conditions on tree-ring width of larch trees in northeastern Yakutia (Larix cajanderi Mayr.) and eastern Taimyr (Larix gmelinii Rupr. (Rupr.) for the period 1956-2003, and to determine the extent to which the interaction of climatic factors (temperature and precipitation) is reflected in the tree-ring anatomical structure. Despite the location of the study sites in the harsh conditions of the north, and temperature as the main limiting factor, it was possible to identify a period during the growing season when tree growth was limited by lack of soil moisture. The application of the VS-model for the studied regions allowed establishing in which period of the growing season the water stress is most often manifest itself, and how phenological phases (beginning, cessation, and duration of larch growth) vary among the years.</p><p>The research was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-44-240001 and by the Russian Ministry of Science and Higher Education (projects FSRZ-2020-0010).</p>


2017 ◽  
Vol 14 (12) ◽  
pp. 3083-3095 ◽  
Author(s):  
Lixin Lyu ◽  
Susanne Suvanto ◽  
Pekka Nöjd ◽  
Helena M. Henttonen ◽  
Harri Mäkinen ◽  
...  

Abstract. Latitudinal and altitudinal gradients can be utilized to forecast the impact of climate change on forests. To improve the understanding of how these gradients impact forest dynamics, we tested two hypotheses: (1) the change of the tree growth–climate relationship is similar along both latitudinal and altitudinal gradients, and (2) the time periods during which climate affects growth the most occur later towards higher latitudes and altitudes. To address this, we utilized tree-ring data from a latitudinal gradient in Finland and from two altitudinal gradients on the Tibetan Plateau. We analysed the latitudinal and altitudinal growth patterns in tree rings and investigated the growth–climate relationship of trees by correlating ring-width index chronologies with climate variables, calculating with flexible time windows, and using daily-resolution climate data. High latitude and altitude plots showed higher correlations between tree-ring chronologies and growing season temperature. However, the effects of winter temperature showed contrasting patterns for the gradients. The timing of the highest correlation with temperatures during the growing season at southern sites was approximately 1 month ahead of that at northern sites in the latitudinal gradient. In one out of two altitudinal gradients, the timing for the strongest negative correlation with temperature at low-altitude sites was ahead of treeline sites during the growing season, possibly due to differences in moisture limitation. Mean values and the standard deviation of tree-ring width increased with increasing mean July temperatures on both types of gradients. Our results showed similarities of tree growth responses to increasing seasonal temperature between latitudinal and altitudinal gradients. However, differences in climate–growth relationships were also found between gradients due to differences in other factors such as moisture conditions. Changes in the timing of the most critical climate variables demonstrated the necessity for the use of daily-resolution climate data in environmental gradient studies.


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


2018 ◽  
Vol 91 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Magdalena Opała-Owczarek ◽  
Tadeusz Niedźwiedź

AbstractWe developed a 1108 yr chronology of tree-ring widths, based on 64 Himalayan pencil juniper (Juniperus semiglobosa Regel) trees, for the Pamir-Alay Mountains, central Asia. Dendroclimatological analysis demonstrates that precipitation has significant effects on tree growth in the semiarid mountainous area of northwestern Tajikistan located on the edge of the great midlatitude Karakum and Kyzylkum deserts. The highest level of linear correlation (r=0.67) is observed between tree growth and seasonalised winter (previous December–February) precipitation. Our studies also show that moisture (precipitation/Palmer Drought Severity Index) from the previous June to the current September was the dominant climatic factor accounting for interannual variations in tree-ring width, suggesting that this should be considered in climate reconstruction. Using the transfer function method, we reconstructed the region’s drought history over the period AD 908–2015. The results of this moisture reconstruction showed that the most recent millennium was characterised by series of dry and wet stages. The driest periods occurred before 1000, 1200–1250, and at the end of the eighteenth century and beginning of the nineteenth century. The wettest conditions existed in 1650–1700 and after 1990.


2019 ◽  
Vol 31 (6) ◽  
pp. 2245-2254 ◽  
Author(s):  
Samresh Rai ◽  
Binod Dawadi ◽  
Yafeng Wang ◽  
Xiaoming Lu ◽  
Huang Ru ◽  
...  

Abstract The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation. However, less is known how forest growth responds to climatic change along elevation. In this study, four standard tree-ring width chronologies of Himalayan fir (Abiesspectabilis) were developed, spanning 142–649 years along an elevation gradient of 3076–3900 m a.s.l. Principal component analysis classified the four chronologies into two groups; the ones at lower elevations (M1 and M2) and higher elevations (M3 and M4) show two distinct growth trends. Radial growth is limited by summer (June–August) precipitation at M3, and by precipitation during spring (March–May) and summer at M4. It is limited by spring temperatures and winter precipitation (December–February) at M1. Tree-ring width chronologies also significantly correlate with winter and spring Palmer Drought Severity Index (PDSI) at M1, and with summer PDSI at M3 and M4. Thus, Himalayan fir growth at high elevations is mainly limited by moisture stress rather than by low temperatures. Furthermore, the occurrence of missing rings coincides with dry periods, providing additional evidence for moisture limitation of Himalayan fir growth.


2007 ◽  
Vol 37 (10) ◽  
pp. 1915-1923 ◽  
Author(s):  
F. Campelo ◽  
E. Gutiérrez ◽  
M. Ribas ◽  
C. Nabais ◽  
H. Freitas

The influence of climatic factors on tree-ring width and the formation of double rings was studied in Quercus ilex L. growing in a coppice stand left unmanaged for 22 years. Ten trees were felled and discs were taken every 30 cm from bole and dominant branches. Dendrometer bands were installed on 10 nearby trees and the data recorded were used to confirm the accuracy of our tree-ring identification. They were also used to relate the seasonal radial growth pattern to double-ring formation. Double rings were frequent and occurred consistently along the stem. Two types of double rings could be recognized according to their width: type I, with the extra growth band accounting for approximately 50% of the tree ring; and type II, with a narrow extra growth band. Type I double rings were formed when approximately 1/2 of the growing-season precipitation occurred during the second growth period of the season and after the summer drought. Type II double rings occurred when approximately 1/3 of the precipitation in the growing season occurred after the summer drought. The formation of double rings was triggered by rainfall in summer and the extra growth-band width was related to summer and autumn environmental conditions. Double rings in Q. ilex can potentially be used in dendroclimatological studies, as they are formed in response to climatic conditions within the growing season.


Boreas ◽  
2013 ◽  
Vol 43 (3) ◽  
pp. 588-599 ◽  
Author(s):  
Xiaomin Zeng ◽  
Xiaohong Liu ◽  
Wenzhi Wang ◽  
Guobao Xu ◽  
Wenling An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document