Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau

2019 ◽  
Vol 174 ◽  
pp. 16-25 ◽  
Author(s):  
Qingfeng Ma ◽  
Liping Zhu ◽  
Xinmiao Lü ◽  
Junbo Wang ◽  
Jianting Ju ◽  
...  
2013 ◽  
Vol 57 (2) ◽  
pp. 261-268
Author(s):  
Demei LIU ◽  
Guichen CHEN ◽  
Zhongping LAI ◽  
Haicheng WEI ◽  
Guoying ZHOU ◽  
...  

2010 ◽  
Vol 55 (12) ◽  
pp. 1169-1177 ◽  
Author(s):  
Bao Yang ◽  
LingYu Tang ◽  
ChunHai Li ◽  
YaJun Shao ◽  
ShiCheng Tao ◽  
...  

2009 ◽  
Vol 71 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Ulrike Herzschuh ◽  
Annette Kramer ◽  
Steffen Mischke ◽  
Chengjun Zhang

AbstractQuantitative information on vegetation and climate history from the late glacial–Holocene on the Tibetan Plateau is extremely rare. Here, we present palynological results of a 4.30-m-long sediment record collected from Koucha Lake in the Bayan Har Mountains, northeastern Tibetan Plateau. Vegetation change has been traced by biomisation, ordination of pollen data, and calculation of pollen ratios. The application of a pollen–climate calibration set from the eastern Tibetan Plateau to Koucha Lake pollen spectra yielded quantitative climate information. The area was covered by alpine desert/steppe, characteristic of a cold and dry climate (with 50% less precipitation than today) between 16,700 and 14,600 cal yr BP. Steppe vegetation, warm (∼ 1°C higher than today) and wet conditions prevailed between 14,600 and 6600 cal yr BP. These findings contradict evidence from other monsoon-influenced areas of Asia, where the early Holocene is thought to have been moist. Low effective moisture on the northeastern Tibetan Plateau was likely due to high temperature and evaporation, even though precipitation levels may have been similar to present-day values. The vegetation changed to tundra around 6600 cal yr BP, indicating that wet and cool climate conditions occurred on the northeastern Tibetan Plateau during the second half of the Holocene.


2009 ◽  
Vol 5 (1) ◽  
pp. 127-151 ◽  
Author(s):  
P. E. Tarasov ◽  
E. V. Bezrukova ◽  
S. K. Krivonogov

Abstract. In this study a radiocarbon-dated pollen record from Lake Kotokel (52°47´ N, 108°07´ E, 458 m a.s.l.) located in southern Siberia east of Lake Baikal was used to derive quantitative characteristics of regional vegetation and climate since about 15 kyr BP (1 kyr=1000 cal. yr) until today. Quantitative reconstruction of the late glacial vegetation and climate dynamics suggests that open steppe and tundra communities predominated in the study area prior to ca. 13.5 kyr BP and again during the Younger Dryas interval, between 12.8 and 11.6 kyr BP. The pollen-based climate reconstruction suggests lower-than-present mean January (~–38°C) and July (~12°C) temperatures and annual precipitation (~270–300 mm) values during these time intervals. Boreal woodland replaced the primarily open landscape around Kotokel three times at about 14.8–14.7 kyr BP, during the Allerød Interstadial between 13.3–12.8 kyr BP and with the onset of the Holocene interglacial between 11.5 and 10.5 kyr BP, presumably in response to a noticeable increase in precipitation, and in July and January temperatures. The maximal spread of the boreal forest (taiga) communities in the region is associated with a warmer and wetter-than-present climate (Tw~17–18°C, Tc~–19°C, Pann~500–550 mm) occurred ca.\\ 10.8–7.3 kyr BP. During this time interval woody vegetation covered more than 50% of the area within a 21×21 km window around the lake. The pollen-based best modern analogue reconstruction suggests a decrease in woody cover percentages and in all climatic variables about 7–6.5 kyr BP. Since that time our results demonstrate gradual decrease in precipitation and mean January temperature towards their present-day values in the region around Lake Kotokel.


2021 ◽  
Vol 572 ◽  
pp. 110403
Author(s):  
Jian'en Han ◽  
Maotang Cai ◽  
Zhaogang Shao ◽  
Feng Liu ◽  
Qianqian Zhang ◽  
...  

2009 ◽  
Vol 5 (3) ◽  
pp. 285-295 ◽  
Author(s):  
P. E. Tarasov ◽  
E. V. Bezrukova ◽  
S. K. Krivonogov

Abstract. In this study a radiocarbon-dated pollen record from Lake Kotokel (52°47´ N, 108°07´ E, 458 m a.s.l.) located in southern Siberia east of Lake Baikal was used to derive quantitative characteristics of regional vegetation and climate from about 15 kyr BP (1 kyr=1000 cal. yr) until today. Quantitative reconstruction of the late glacial vegetation and climate dynamics suggests that open steppe and tundra communities predominated in the study area prior to ca. 13.5 kyr BP and again during the Younger Dryas interval, between 12.8 and 11.6 kyr BP. The pollen-based climate reconstruction suggests lower-than-present mean January (~−38°C) and July (~12°C) temperatures and annual precipitation (~270–300 mm) values during these time intervals. Boreal woodland replaced the primarily open landscape around Kotokel three times at about 14.8–14.7 kyr BP, during the Allerød Interstadial between 13.3–12.8 kyr BP and with the onset of the Holocene interglacial between 11.5 and 10.5 kyr BP, presumably in response to a noticeable increase in precipitation, and in July and January temperatures. The maximal spread of the boreal forest (taiga) communities in the region is associated with a warmer and wetter-than-present climate (Tw~17–18°C, Tc~−19°C, Pann~500–550 mm) that occurred ca. 10.8–7.3 kyr BP. During this time interval woody vegetation covered more than 50% of the area within a 21×21 km window around the lake. The pollen-based best modern analogue reconstruction suggests a decrease in woody cover percentages and in all climatic variables about 7–6.5 kyr BP. Our results demonstrate a gradual decrease in precipitation and mean January temperature towards their present-day values in the region around Lake Kotokel since that time.


2012 ◽  
Vol 337-338 ◽  
pp. 159-176 ◽  
Author(s):  
Stephan Opitz ◽  
Bernd Wünnemann ◽  
Bernhard Aichner ◽  
Elisabeth Dietze ◽  
Kai Hartmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document