scholarly journals Phosphorus-cycle disturbances during the Late Devonian anoxic events

2020 ◽  
Vol 184 ◽  
pp. 103070 ◽  
Author(s):  
L.M.E. Percival ◽  
D.P.G. Bond ◽  
M. Rakociński ◽  
L. Marynowski ◽  
A.v.S. Hood ◽  
...  
2018 ◽  
Author(s):  
Carlos E. Molinares Blanco ◽  
◽  
Bryan W. Turner ◽  
Roger M. Slatt ◽  
Nevin P. Kozik ◽  
...  

2004 ◽  
Vol 141 (2) ◽  
pp. 173-193 ◽  
Author(s):  
DAVID BOND ◽  
PAUL B. WIGNALL ◽  
GRZEGORZ RACKI

The intensity and extent of anoxia during the two Kellwasser anoxic events has been investigated in a range of European localities using a multidisciplinary approach (pyrite framboid assay, gamma-ray spectrometry and sediment fabric analysis). The results reveal that the development of the Lower Kellwasser Horizon in the early Late rhenana Zone (Frasnian Stage) in German type sections does not always coincide with anoxic events elsewhere in Europe and, in some locations, seafloor oxygenation improves during this interval. Thus, this anoxic event is not universally developed. In contrast, the Upper Kellwasser Horizon, developed in the Late linguiformis Zone (Frasnian Stage) in Germany correlates with a European-wide anoxic event that is manifest as an intensification of anoxia in basinal locations to the point that stable euxinic conditions were developed (for example, in the basins of the Holy Cross Mountains, Poland). The interval also saw the spread of dysoxic waters into very shallow water (for instance, reefal) locations, and it seems reasonable to link the contemporaneous demise of many marine taxa to this phase of intense and widespread anoxia. In basinal locations, euxinic conditions persisted into the earliest Famennian with little change of depositional conditions. Only in the continental margin location of Austria was anoxia not developed at any time in the Late Devonian. Consequently it appears that the Upper Kellwasser anoxic event was an epicontinental seaway phenomenon, caused by the upward expansion of anoxia from deep basinal locales rather than an ‘oceanic’ anoxic event that has spilled laterally into epicontinental settings.


2019 ◽  
Author(s):  
Sebastian Beil ◽  
Wolfgang Kuhnt ◽  
Ann Holbourn ◽  
Florian Scholz ◽  
Julian Oxmann ◽  
...  

Abstract. Oceanic Anoxic Events (OAEs) document major perturbations of the global carbon cycle with repercussions on the Earth’s climate and ocean circulation that are relevant to understand future climate trends. Here, we compare sedimentation patterns, nutrient cycling, organic carbon accumulation and carbon isotope variability across Cretaceous Oceanic Anoxic Events OAE1a and OAE2 in two drill cores with unusually high sedimentation rates from the Vocontian Basin (southern France) and Tarfaya Basin (southern Morocco). OAE1a and OAE2 exhibit remarkable similarities in the evolution of their δ13C excursion with long-lasting negative carbon isotope excursions preceding the onset of both anoxic events, supporting the view that OAEs were triggered by massive emissions of volcanic CO2 into the atmosphere. Based on analysis of cyclic sediment variations, we estimated the duration of the individual phases within the carbon isotope excursions. For both events, we identify: (1) a precursor phase lasting ~ 430 kyr and ~ 130 kyr, (2) an onset phase of ~ 390 and ~ 70 kyr, (3) a peak phase of ~ 600 and ~ 90 kyr, (4) a plateau phase of ~ 1400 and ~ 200 kyr and (5) a recovery phase of ~ 630 and ~ 440 kyr, respectively. The total duration of the positive carbon isotope excursion is estimated as 3400 kyr and 790 kyr and that of the main carbon accumulation phase as 980 kyr and 180 kyr, for OAE1a and OAE 2 respectively. The extended duration of the peak, plateau and recovery phases requires fundamental changes in global nutrient cycles either (1) through excess nutrient inputs to the oceans by increasing continental weathering and river discharge or (2) through nutrient-recycling from the marine sediment reservoir. We investigated the role of phosphorus on the development of carbon accumulation by analysing phosphorus speciation across OAE2 and the mid-Cenomanian Event (MCE) in the Tarfaya Basin. The ratios of organic carbon and total nitrogen to reactive phosphorus (Corg/Preact and Ntotal/Preact) prior to OAE2 and the MCE hover close to or below the Redfield ratio characteristic of marine organic matter. Decreases in reactive phosphorus resulting in Corg/Preact and Ntotal/Preact above the Redfield ratio during the later phase of OAE2 and the MCE indicate leakage from the sedimentary column into the water column under the influence of intensified and expanded oxygen minimum zones. These results suggest that a positive feedback loop, rooted in the benthic phosphorus cycle, contributed to increased marine productivity and carbon burial over an extended period of time during OAEs.


2020 ◽  
Vol 16 (2) ◽  
pp. 757-782
Author(s):  
Sebastian Beil ◽  
Wolfgang Kuhnt ◽  
Ann Holbourn ◽  
Florian Scholz ◽  
Julian Oxmann ◽  
...  

Abstract. Oceanic anoxic events (OAEs) document major perturbations of the global carbon cycle with repercussions for the Earth's climate and ocean circulation that are relevant to understanding future climate trends. Here, we compare the onset and development of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates from the Vocontian Basin (southern France) and Tarfaya Basin (southern Morocco). OAE1a and OAE2 exhibit remarkable similarities in the evolution of their carbon isotope (δ13C) records, with long-lasting negative excursions preceding the onset of the main positive excursions, supporting the view that both OAEs were triggered by massive emissions of volcanic CO2 into the atmosphere. However, there are substantial differences, notably in the durations of individual phases within the δ13C positive excursions of both OAEs. Based on analysis of cyclic sediment variations, we estimate the duration of individual phases within OAE1a and OAE2. We identify (1) a precursor phase (negative excursion) lasting ∼430 kyr for OAE1a and ∼130 kyr for OAE2, (2) an onset phase of ∼390 and ∼70 kyr, (3) a peak phase of ∼600 and ∼90 kyr, (4) a plateau phase of ∼1340 and ∼200 kyr, and (5) a recovery phase of ∼380 and ∼440 kyr. The total duration of the positive δ13C excursion is estimated at 2700 kyr for OAE1a and 790 kyr for OAE2, and that of the main carbon accumulation phase is estimated at 980 and 180 kyr. The long-lasting peak, plateau and recovery phases imply fundamental changes in global nutrient cycles either (1) by submarine basalt–seawater interactions, (2) through excess nutrient inputs to the oceans by increasing continental weathering and river discharge, or (3) through nutrient recycling from the marine sediment reservoir. We investigated the role of phosphorus in the development of carbon accumulation by analysing phosphorus speciation across OAE2 and the mid-Cenomanian Event (MCE) in the Tarfaya Basin. The ratios of organic carbon and total nitrogen to reactive phosphorus (Corg∕Preact and Ntotal∕Preact) prior to OAE2 and the MCE hover close to or below the Redfield ratio characteristic of marine organic matter. Decreases in reactive phosphorus resulting in Corg∕Preact and Ntotal∕Preact above the Redfield ratio during the later phase of OAE2 and the MCE indicate leakage from the sedimentary column into the water column under the influence of intensified and expanded oxygen minimum zones. These results suggest that a positive feedback loop, rooted in the benthic phosphorus cycle, contributed to increased marine productivity and carbon burial over an extended period of time during OAEs.


2019 ◽  
Author(s):  
Sebastian Beil ◽  
Wolfgang Kuhnt ◽  
Ann Holbourn ◽  
Florian Scholz ◽  
Julian Oxmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document