scholarly journals Reconstructed temperature change in late summer over the eastern Tibetan Plateau since 1867 CE and the role of anthropogenic forcing

2021 ◽  
pp. 103715
Author(s):  
Hong Yin ◽  
Ying Sun ◽  
Ming-Yong Li
2019 ◽  
Vol 65 (252) ◽  
pp. 633-644 ◽  
Author(s):  
YANG LI ◽  
SHICHANG KANG ◽  
FANGPING YAN ◽  
JIZU CHEN ◽  
KUN WANG ◽  
...  

ABSTRACTCryoconite is a dark-coloured granular sediment that contains biological and mineralogical components, and it plays a pivotal role in geochemistry, carbon cycling and glacier mass balance. In this work, we collected cryoconite samples from Laohugou Glacier No. 12 (LHG) on the north-eastern Tibetan Plateau during the summer of 2015 and measured the spectral albedo. To explore the impacts of this sediment on surface ablation, the ice melting differences between the cryoconite-free (removed) ice and the intact layers were compared. The results showed that the mean concentrations of black carbon (BC), organic carbon (OC) and total iron (Fe) in the LHG cryoconite were 1.28, 11.18 and 39.94 mg g−1, respectively. BC was found to play a stronger role in solar light adsorption than OC and free Fe. In addition, ice covered by cryoconite exhibited the lowest mean reflectance (i.e., <0.1). Compared with the cryoconite-free ice surface, cryoconite effectively absorbed solar energy and enhanced glacial melting at a rate of 2.27–3.28 cm d−1, and free Fe, BC and OC were estimated to contribute 1.01, 0.99 and 0.76 cm d−1, respectively. This study provides important insights for understanding the role of cryoconite in the glacier mass balance of the northern Tibetan Plateau.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2601 ◽  
Author(s):  
Yong Zhang ◽  
Shiyin Liu ◽  
Qiao Liu ◽  
Xin Wang ◽  
Zongli Jiang ◽  
...  

Runoff from high-elevation, debris-covered glaciers is a crucial water supply in the Tibetan Plateau (TP) and its surroundings, where insufficient debris thickness data make it difficult to analyze its influence. Here, we investigated the role of debris cover in runoff formation of the Hailuogou catchment in the south-eastern Tibetan Plateau for the 1988–2017 period, based on long-term observations combined with a physically based glacio-hydrological model. The catchment is characterized by extensive thin debris on the ablation zones of three debris-covered glaciers. An increasing trend in catchment runoff has been observed in the past three decades, more than 50% of which is attributed to glacier runoff in the last decade. With the exception of the influence of temperature rising and precipitation decreasing, our results underline the importance of debris cover and its spatial features in the glaciological and hydrological processes of the catchment, in which the acceleration effect of debris cover is dominant in the catchment. An experimental analysis indicated that the extraordinary excess meltwater in the catchment is generated from the debris-covered surface, especially the lower elevation region below 3600 m a.s.l.


Sign in / Sign up

Export Citation Format

Share Document