debris cover
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 65)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Ulfat Majeed ◽  
Irfan Rashid ◽  
Nadeem Ahmad Najar ◽  
Nafeeza Gul

Glaciers across the Himalayan arc are showing varying signs of recession. Glaciers in the eastern and western parts of the Himalayan arc are retreating more rapidly as compared to other regions. This differential retreat is often attributed to climatic, topographic, and geologic influences. The glaciers in the Trans-Himalayan region of Ladakh are believed to be relatively stable as compared to other parts of the western Himalaya. The present study ascertained the area changes and frontal retreat of 87 glaciers in the Pangong Region between 1990 and 2019 using satellite data. The geodetic mass changes were also assessed using SRTM and TanDEM-X digital elevation models of 2000 and 2012 respectively. Besides, the glacier outlines were delineated manually and compared with existing regional and global glacier inventories that are available over the region. The GlabTop model was used to simulate the glacier-bed overdeepenings of four glaciers that are associated with a proglacial lake. The study also analyzed the impact of topographic influences and varying debris cover on glacier recession. This analysis indicated deglaciation of 6.7 ± 0.1% (0.23% a−1) from 1990 to 2019 over the Pangong Region with clean-ice glaciers showing a higher retreat (8.4 ± 0.28%) compared to the debris-covered glaciers (5.7 ± 0.14%). However, the overall recession is lower compared to other parts of northwestern Himalayas. The glacier recession showed a positive correlation with mean glacier slope (r = 0.3) and debris cover (r = 0.1) with bigger size glaciers having retreated at a lesser pace compared to smaller ones. This underpins the need for in-situ data about debris thickness to precisely ascertain the role of debris on glacier recession in the Trans-Himalayan Ladakh where debris thickness data is absent. The mean glacier elevation did not indicate any influence on glacier recession. From 2000 to 12, the glaciers lost an ice mass amounting to 0.33 ± 0.05 m we. per year. The formation of four new proglacial lakes, although small (<6 ha), need to be monitored using remote sensing data while the infrastructure development activities should not be permitted given glacial lake outburst flood risk.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lindsey Nicholson ◽  
Anna Wirbel ◽  
Christoph Mayer ◽  
Astrid Lambrecht

Ongoing changes in mountain glaciers affect local water resources, hazard potential and global sea level. An increasing proportion of remaining mountain glaciers are affected by the presence of a surface cover of rock debris, and the response of these debris-covered glaciers to climate forcing is different to that of glaciers without a debris cover. Here we take a back-to-basics look at the fundamental terms that control the processes of debris evolution at the glacier surface, to illustrate how the trajectory of debris cover development is partially decoupled from prevailing climate conditions, and that the development of a debris cover over time should prevent the glacier from achieving steady state. We discuss the approaches and limitations of how this has been treated in existing modeling efforts and propose that “surrogate world” numerical representations of debris-covered glaciers would facilitate the development of well-validated parameterizations of surface debris cover that can be used in regional and global glacier models. Finally, we highlight some key research targets that would need to be addressed in order to enable a full representation of debris-covered glacier system response to climate forcing.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lavkush Kumar Patel ◽  
Parmanand Sharma ◽  
Ajit Singh ◽  
Sunil Oulkar ◽  
Bhanu Pratap ◽  
...  

A large number of glaciers in the Hindu-Kush Himalaya are covered with debris in the lower part of the ablation zone, which is continuously expanding due to enhanced glacier mass loss. The supraglacial debris transported over the melting glacier surface acts as an insulating barrier between the ice and atmospheric conditions and has a strong influence on the spatial distribution of surface ice melt. We conducted in-situ field measurements of point-wise ablation rate, supraglacial debris thickness, and debris temperature to examine the thermal resistivity of the debris pack and its influence on ablation over three glaciers (Bara Shigri, Batal, and Kunzam) in Chandra Basin of Western Himalaya during 2016–2017. Satellite-based supraglacial debris cover assessment shows an overall debris covered area of 15% for Chandra basin. The field data revealed that the debris thickness varied between 0.5 and 326 cm, following a spatially distributed pattern in the Chandra basin. The studied glaciers have up to 90% debris cover within the ablation area, and together represent ∼33.5% of the total debris-covered area in the basin. The supraglacial debris surface temperature and near-surface air temperature shows a significant correlation (r = > 0.88, p = < 0.05), which reflects the effective control of energy balance over the debris surface. The thermal resistivity measurements revealed low resistance (0.009 ± 0.01 m2°C W−1) under thin debris pack and high resistance (0.55 ± 0.09 m2°C W−1) under thick debris. Our study revealed that the increased thickness of supraglacial debris significantly retards the glacier ablation due to its high thermal resistivity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Joseph M. Shea ◽  
Philip D. A. Kraaijenbrink ◽  
Walter W. Immerzeel ◽  
Fanny Brun

Debris-covered glaciers represent potentially significant stores of freshwater in river basins throughout High Mountain Asia (HMA). Direct glacier mass balance measurements are extremely difficult to maintain on debris-covered glaciers, and optical remote sensing techniques to evaluate annual equilibrium line altitudes (ELAs) do not work in regions with summer-accumulation type glaciers. Surface elevation and glacier velocity change have been calculated previously for debris-covered glaciers across the region, but the response of debris cover itself to climate change remains an open question. In this research we propose a new metric, i.e. the debris emergence elevation (ZDE), which can be calculated from a combination of optical and thermal imagery and digital elevation data. We quantify ZDE for 975 debris-covered glaciers in HMA over three compositing periods (1985–1999, 2000–2010, and 2013–2017) and compare ZDE against median glacier elevations, modelled ELAs, and observed rates of both mass change and glacier velocity change. Calculated values of ZDE for individual glaciers are broadly similar to both median glacier elevations and modelled ELAs, but slightly lower than both. Across the HMA region, the average value of ZDE increased by 70 +/− 126 m over the study period, or 2.7 +/− 4.1 m/yr. Increases in ZDE correspond with negative mass balance rates and decreases in glacier velocity, while glaciers and regions that show mass gains and increases in glacier velocity experienced decreases in ZDE. Regional patterns of ZDE, glacier mass balance, and glacier velocities are strongly correlated, which indicates continued overall increases in ZDEE and expansion of debris-covered areas as glaciers continue to lose mass. Our results suggest that ZDE is a useful metric to examine regional debris-covered glacier changes over decadal time scales, and could potentially be used to reconstruct relative mass and ELA changes on debris-covered glaciers using historical imagery or reconstructed debris cover extents.


2021 ◽  
Vol 15 (9) ◽  
pp. 4557-4588
Author(s):  
Adina E. Racoviteanu ◽  
Lindsey Nicholson ◽  
Neil F. Glasser

Abstract. The Himalaya mountain range is characterized by highly glacierized, complex, dynamic topography. The ablation area of Himalayan glaciers often features a highly heterogeneous debris mantle comprising ponds, steep and shallow slopes of various aspects, variable debris thickness, and exposed ice cliffs associated with differing ice ablation rates. Understanding the composition of the supraglacial debris cover is essential for a proper understanding of glacier hydrology and glacier-related hazards. Until recently, efforts to map debris-covered glaciers from remote sensing focused primarily on glacier extent rather than surface characteristics and relied on traditional whole-pixel image classification techniques. Spectral unmixing routines, rarely used for debris-covered glaciers, allow decomposition of a pixel into constituting materials, providing a more realistic representation of glacier surfaces. Here we use linear spectral unmixing of Landsat 8 Operational Land Imager (OLI) images (30 m) to obtain fractional abundance maps of the various supraglacial surfaces (debris material, clean ice, supraglacial ponds and vegetation) across the Himalaya around the year 2015. We focus on the debris-covered glacier extents as defined in the database of global distribution of supraglacial debris cover. The spectrally unmixed surfaces are subsequently classified to obtain maps of composition of debris-covered glaciers across sample regions. We test the unmixing approach in the Khumbu region of the central Himalaya, and we evaluate its performance for supraglacial ponds by comparison with independently mapped ponds from high-resolution Pléiades (2 m) and PlanetScope imagery (3 m) for sample glaciers in two other regions with differing topo-climatic conditions. Spectral unmixing applied over the entire Himalaya mountain range (a supraglacial debris cover area of 2254 km2) indicates that at the end of the ablation season, debris-covered glacier zones comprised 60.9 % light debris, 23.8 % dark debris, 5.6 % clean ice, 4.5 % supraglacial vegetation, 2.1 % supraglacial ponds, and small amounts of cloud cover (2 %), with 1.2 % unclassified areas. The spectral unmixing performed satisfactorily for the supraglacial pond and vegetation classes (an F score of ∼0.9 for both classes) and reasonably for the debris classes (F score of 0.7). Supraglacial ponds were more prevalent in the monsoon-influenced central-eastern Himalaya (up to 4 % of the debris-covered area) compared to the monsoon-dry transition zone (only 0.3 %) and in regions with lower glacier elevations. Climatic controls (higher average temperatures and more abundant precipitation), coupled with higher glacier thinning rates and lower average glacier velocities, further favour pond incidence and the development of supraglacial vegetation. With continued advances in satellite data and further method refinements, the approach presented here provides avenues towards achieving large-scale, repeated mapping of supraglacial features.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1330
Author(s):  
Angelo T. Filicetti ◽  
Ryan A. LaPointe ◽  
Scott E. Nielsen

Restoring anthropogenic footprints to pre-disturbance conditions or minimizing their long-term impacts is an important goal in conservation. Many footprints, particularly if left alone, have wide-ranging effects on biodiversity. In Canada, energy exploration footprints result in forest dissection and fragmentation contributing to declines in woodland caribou. Developing cost effective strategies to restore forests and thus conserving the woodland caribou habitat is a conservation priority. In this study, we compared the effects of wildfire and local variation in the amount of residual woody debris on natural regeneration in jack pine on exploratory well pads in Alberta’s boreal forest. Specifically, we investigated how footprint size, fire severity (overstory tree mortality), ground cover of fine and coarse woody debris, and adjacent stand characteristics (i.e., height, age, and cover), affected tree regeneration densities and height using negative binomial count and linear models (Gaussian), respectively. Regeneration density was 30% higher on exploratory well pads than adjacent forests, increased linearly with fire severity on the exploratory well pads (2.2% per 1% increase in fire severity), but non-linearly in adjacent forests (peaking at 51,000 stems/ha at 72% fire severity), and decreased with amount of woody debris on exploratory well pads (2.7% per 1% increase in woody debris cover). The height of regenerating trees on exploratory well pads decreased with fire severity (0.56 cm per 1% increase in fire severity) and was non-linearly related to coarse woody debris (peaking at 286 cm at 9.4% coarse woody debris cover). Heights of 3 and 5 m on exploratory well pads were predicted by 13- and 21-years post-fire, respectively. Our results demonstrate that wildfires can stimulate natural recovery of fire-adapted species, such as jack pine, on disturbances as large as exploratory well pads (500–1330 m2) and that the type and amount of woody debris affects these patterns.


2021 ◽  
Author(s):  
Loris Compagno ◽  
Matthias Huss ◽  
Evan Stewart Miles ◽  
Michael James McCarthy ◽  
Harry Zekollari ◽  
...  

Abstract. Currently, about 12–13 % of High Mountain Asia's glacier area is debris-covered, altering its surface mass balance. However, in regional-scale modelling approaches, debris-covered glaciers are typically treated as clean-ice glaciers, leading to a potential bias when modelling their future evolution. Here, we present a new approach for modelling debris area and thickness evolution, applicable from single glaciers to the global scale. We implement the module into the Global Glacier Evolution Model (GloGEMflow), a combined mass-balance ice-flow model. The module is initialized with both glacier-specific observations of the debris’ spatial distribution and estimates of debris thickness, accounts for the fact that debris can either enhance or reduce surface melt depending on thickness, and enables representing the spatio-temporal evolution of debris extent and thickness. We calibrate and evaluate the module on a select subset of glaciers, and apply the model using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia until 2100. Compared to 2020, total glacier volume is expected to decrease by between 35 ± 15 % and 80 ±11 %, which is in line with projections in the literature. Depending on the scenario, the mean debris-cover fraction is expected to increase, while mean debris thickness is modelled to show only minor changes, albeit large local thickening is expected. To isolate the influence of explicitly accounting for supraglacial debris-cover, we re-compute glacier evolution without the debris-cover module. We show that glacier geometry, area, volume and flow velocity evolve differently, especially at the level of individual glaciers. This highlights the importance of accounting for debris-cover and its spatio-temporal evolution when projecting future glacier changes.


2021 ◽  
Author(s):  
Loris Compagno ◽  
Matthias Huss ◽  
Evan Stewart Miles ◽  
Michael James McCarthy ◽  
Harry Zekollari ◽  
...  

2021 ◽  
Vol 15 (7) ◽  
pp. 3377-3399
Author(s):  
James C. Ferguson ◽  
Andreas Vieli

Abstract. Debris-covered glaciers are commonly found in alpine landscapes of high relief and play an increasingly important role in a warming climate. As a result of the insulating effect of supraglacial debris, their response to changes in climate is less direct and their dynamic behaviour more complex than for debris-free glaciers. Due to a lack of observations, here we use numerical modelling to explore the dynamic interactions between debris cover and geometry evolution for an idealized glacier over centennial timescales. The main goal of this study is to understand the effects of debris cover on the glacier's transient response. To do so, we use a numerical model that couples ice flow, debris transport, and its insulating effect on surface mass balance and thereby captures dynamic feedbacks that affect the volume and length evolution. In a second step we incorporate the effects of cryokarst features such as ice cliffs and supraglacial ponds on the dynamical behaviour. Our modelling indicates that thick debris cover delays both the volume response and especially the length response to a warming climate signal. Including debris dynamics therefore results in glaciers with extended debris-covered tongues and that tend to advance or stagnate in length in response to a fluctuating climate at century timescales and hence remember the cold periods more than the warm. However, when including even a relatively small amount of melt enhancing cryokarst features in the model, the length is more responsive to periods of warming and results in substantial mass loss and thinning on debris-covered tongues, as is also observed.


2021 ◽  
pp. 1-15
Author(s):  
Purushottam Kumar Garg ◽  
Siddhi Garg ◽  
Bisma Yousuf ◽  
Aparna Shukla ◽  
Vinit Kumar ◽  
...  

Abstract This study investigates stagnation conditions of the Pensilungpa glacier, western Himalaya. Multiple glacier parameters (length, area, debris extent and thickness, snowline altitude (SLA), velocity, downwasting and ice cliffs) were studied using field measurements (2016–18), high-resolution imagery from GoogleEarth (2013–17) and spaceborne Landsat, ASTER and SRTM data (1993–2017) to comprehend the glacier's current state. Results show a moderate decrease in length (6.62 ± 2.11 m a−1) and area (0.11 ± 0.03% a−1), a marked increase in SLA (~6 m a−1) and debris cover (2.86 ± 0.29% a−1) and a slowdown of ~50% during 1993–2016. Notable thinning of −0.88 ± 0.04 m a−1 was observed between 2000 and 2017 showing a similar trend as field measurements during 2016–17 (−0.88 m) and 2017–18 (−1.54 m). Further, results reveal a stagnation of the lower ablation zone (LAZ). Less mass supply and heterogeneous debris growth (6.67 ± 0.41% a−1) over the previous decade resulted in slowdown, margin insulation and slope-inversion, leading to stagnation. Stagnation of LAZ caused bulging in the dynamic upper ablation zone and favored the development of supraglacial ponds and ice cliffs. Ice cliffs have grown significantly (48% in number; 41% in area during 2013–17) and their back-wasting now dominates the ablation process.


Sign in / Sign up

Export Citation Format

Share Document