Distribution and dynamics of two species of Dinophyceae producing high biomass blooms over the French Atlantic Shelf

Harmful Algae ◽  
2016 ◽  
Vol 53 ◽  
pp. 53-63 ◽  
Author(s):  
M. Sourisseau ◽  
K. Jegou ◽  
M. Lunven ◽  
J. Quere ◽  
F. Gohin ◽  
...  
Keyword(s):  
2018 ◽  
Vol 02 (03) ◽  
Author(s):  
Sanyuan Tang ◽  
Zi Wang ◽  
Chengxuan Chen ◽  
Peng Xie ◽  
Qi Xie

Author(s):  
Bárbara Angélio Quirino ◽  
Franco Teixeira de Mello ◽  
Sabrina Deosti ◽  
Claudia Costa Bonecker ◽  
Ana Lúcia Paz Cardozo ◽  
...  

Abstract Habitat complexity is recognized to mediate predator–prey relationships by offering refuge or not. We investigated the availability of planktonic microcrustaceans and the diet of a planktivorous fish (Hyphessobrycon eques) at different levels (low, intermediate and high) of aquatic macrophyte biomass. Sampling was carried out in a river with low flow speed, located in a Neotropical floodplain. We collected fish and microcrustaceans in macrophyte stands with variations in biomass. There were no differences in microcrustacean density in the water among the levels of macrophyte biomass, but microcrustacean richness and diet composition of H. eques differed. Microcrustacean richness and trophic niche breadth of the planktivorous fish were higher in high biomass stands. There was high consumption of a small cladoceran species in low macrophyte biomass, which was replaced by larger species, such as copepods, in intermediate and high biomass. Thus, the selection of some species was different among the biomass levels. These results suggest that plant biomass plays an important role in the interaction between fish and microcrustaceans, and prey characteristics such as size, escape ability and energy value make them more or less subject to predation by fish according to habitat structuring.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Shu Yu ◽  
Cody S. Bekkering ◽  
Li Tian

AbstractWoody plant species represent an invaluable reserve of biochemical diversity to which metabolic engineering can be applied to satisfy the need for commodity and specialty chemicals, pharmaceuticals, and renewable energy. Woody plants are particularly promising for this application due to their low input needs, high biomass, and immeasurable ecosystem services. However, existing challenges have hindered their widespread adoption in metabolic engineering efforts, such as long generation times, large and highly heterozygous genomes, and difficulties in transformation and regeneration. Recent advances in omics approaches, systems biology modeling, and plant transformation and regeneration methods provide effective approaches in overcoming these outstanding challenges. Promises brought by developments in this space are steadily opening the door to widespread metabolic engineering of woody plants to meet the global need for a wide range of sustainably sourced chemicals and materials.


2016 ◽  
Vol 16 (2) ◽  
pp. 158-162
Author(s):  
Emilio Ghisleni Arenhardt ◽  
José Antonio Gonzalez da Silva ◽  
Ewerton Gewehr ◽  
Lorenzo Ghisleni Arenhardt ◽  
Celso Luis Arenhardt ◽  
...  
Keyword(s):  

Plant Science ◽  
2017 ◽  
Vol 261 ◽  
pp. 10-17 ◽  
Author(s):  
John E. Mullet
Keyword(s):  

2021 ◽  
Author(s):  
Tinsae Bahru Yifru ◽  
Berhane Kidane ◽  
Amsalu Tolessa

Abstract Background: In Ethiopia, about 92.3% of all the biomass energy is consumed by domestic households and the demand is growing from 10-14%. However, there are little/no practical experiences or documented indigenous knowledge on how traditional people identify and select high biomass producing plant species with short rotation periods at Boset District. Therefore, the present study was aimed at: (1) selecting and documenting high biomass energy producing plant species at Boset District; (2) identifying major predictor variables that influence the prioritization and selection of species; and (3) develop a Generalized Linear Model (GLM) to predict the selection of species. Methods: A total of 96 informants comprising 59 men and 37 women between the ages of 18 and 81 were sampled. Data were collected using structured interviews, guided field walk, discussions and field observations. Results: Collected data indicated that 88.5% of the informants involved in firewood collection, while 90% practiced charcoal making. A total of 1533.60 Birr per household on average was earned annually from this activity. A total of 25 firewood and/or charcoal plant species were identified and documented at Boset District. Of these, Acacia senegal, Acacia tortilis and Acacia robusta were the three best prioritized and selected indigenous high biomass producing species. Prosopis juliflora, Parthenium hysterophorus, Azadirachta indica, Calotropis procera, Cryptostegia grandiflora, Lantana camara and Senna occidentalis further grouped under introduced fuelwood species. Prediction of GLM assured sampled Kebeles and source of income generated from fuelwood species positively and significantly (p<0.001) related to selection of species. Higher efficiency to provide energy and heat; little or no smoke or soot; easier to cut and split the wood and easier availability were some of the main selection criteria. Conclusions: This study provides valuable information in selection and documenting of high biomass producing plant species for proper management and sustainable use at Boset District. The three most selected species (A. senegal, A. tortilis and A. robusta) should be further evaluated at laboratory to determine their energy values.


Sign in / Sign up

Export Citation Format

Share Document