scholarly journals Phenotypic plasticity in Daphnia pulicaria as an adaptation to high biomass of colonial and filamentous cyanobacteria: experimental evidence

2002 ◽  
Vol 24 (10) ◽  
pp. 1047-1056 ◽  
Author(s):  
A. Ghadouani
2019 ◽  
Vol 286 (1897) ◽  
pp. 20182625 ◽  
Author(s):  
Richard Svanbäck ◽  
Frank Johansson

Increased eye size in animals results in a larger retinal image and thus improves visual acuity. Thus, larger eyes should aid both in finding food as well as detecting predators. On the other hand, eyes are usually very conspicuous and several studies have suggested that eye size is associated with predation risk. However, experimental evidence is scant. In this study, we address how predation affects variation in eye size by performing two experiments using Eurasian perch juveniles as prey and either larger perch or pike as predators. First, we used large outdoor tanks to compare selection due to predators on relative eye size in open and artificial vegetated habitats. Second, we studied the effects of both predation risk and resource levels on phenotypic plasticity in relative eye size in indoor aquaria experiments. In the first experiment, we found that habitat altered selection due to predators, since predators selected for smaller eye size in a non-vegetated habitat, but not in a vegetated habitat. In the plasticity experiment, we found that fish predators induced smaller eye size in males, but not in females, while resource levels had no effect on eye size plasticity. Our experiments provide evidence that predation risk could be one of the driving factors behind variation in eye size within species.


2019 ◽  
Vol 42 ◽  
Author(s):  
Olya Hakobyan ◽  
Sen Cheng

Abstract We fully support dissociating the subjective experience from the memory contents in recognition memory, as Bastin et al. posit in the target article. However, having two generic memory modules with qualitatively different functions is not mandatory and is in fact inconsistent with experimental evidence. We propose that quantitative differences in the properties of the memory modules can account for the apparent dissociation of recollection and familiarity along anatomical lines.


1997 ◽  
Vol 161 ◽  
pp. 437-442
Author(s):  
Salvatore Di Bernardo ◽  
Romana Fato ◽  
Giorgio Lenaz

AbstractOne of the peculiar aspects of living systems is the production and conservation of energy. This aspect is provided by specialized organelles, such as the mitochondria and chloroplasts, in developed living organisms. In primordial systems lacking specialized enzymatic complexes the energy supply was probably bound to the generation and maintenance of an asymmetric distribution of charged molecules in compartmentalized systems. On the basis of experimental evidence, we suggest that lipophilic quinones were involved in the generation of this asymmetrical distribution of charges through vectorial redox reactions across lipid membranes.


Author(s):  
Michael T. Bucek ◽  
Howard J. Arnott

It is believed by the authors, with supporting experimental evidence, that as little as 0.5°, or less, knife clearance angle may be a critical factor in obtaining optimum quality ultrathin sections. The degree increments located on the knife holder provides the investigator with only a crude approximation of the angle at which the holder is set. With the increments displayed on the holder one cannot set the clearance angle precisely and reproducibly. The ability to routinely set this angle precisely and without difficulty would obviously be of great assistance to the operator. A device has been contrived to aid the investigator in precisely setting the clearance angle. This device is relatively simple and is easily constructed. It consists of a light source and an optically flat, front surfaced mirror with a minute black spot in the center. The mirror is affixed to the knife by placing it permanently on top of the knife holder.


Author(s):  
H. Mohri

In 1959, Afzelius observed the presence of two rows of arms projecting from each outer doublet microtubule of the so-called 9 + 2 pattern of cilia and flagella, and suggested a possibility that the outer doublet microtubules slide with respect to each other with the aid of these arms during ciliary and flagellar movement. The identification of the arms as an ATPase, dynein, by Gibbons (1963)strengthened this hypothesis, since the ATPase-bearing heads of myosin molecules projecting from the thick filaments pull the thin filaments by cross-bridge formation during muscle contraction. The first experimental evidence for the sliding mechanism in cilia and flagella was obtained by examining the tip patterns of molluscan gill cilia by Satir (1965) who observed constant length of the microtubules during ciliary bending. Further evidence for the sliding-tubule mechanism was given by Summers and Gibbons (1971), using trypsin-treated axonemal fragments of sea urchin spermatozoa. Upon the addition of ATP, the outer doublets telescoped out from these fragments and the total length reached up to seven or more times that of the original fragment. Thus, the arms on a certain doublet microtubule can walk along the adjacent doublet when the doublet microtubules are disconnected by digestion of the interdoublet links which connect them with each other, or the radial spokes which connect them with the central pair-central sheath complex as illustrated in Fig. 1. On the basis of these pioneer works, the sliding-tubule mechanism has been established as one of the basic mechanisms for ciliary and flagellar movement.


Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 829-833
Author(s):  
C KITTEL

Sign in / Sign up

Export Citation Format

Share Document