scholarly journals Negative volume changes of human G-quadruplexes at unfolding

Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05702
Author(s):  
Orsolya Réka Molnár ◽  
Judit Somkuti ◽  
László Smeller
2020 ◽  
Vol 22 (41) ◽  
pp. 23816-23823 ◽  
Author(s):  
Judit Somkuti ◽  
Orsolya Réka Molnár ◽  
László Smeller

The i-motif structure of the human telomeric DNA was destabilized by pressure and unfolded with a negative volume change.


1997 ◽  
Vol 94 ◽  
pp. 1816-1826 ◽  
Author(s):  
M Glazov ◽  
LM Pavlova ◽  
SV Stankus
Keyword(s):  

2005 ◽  
Vol 38 (05) ◽  
Author(s):  
TS Frodl ◽  
T Zetzsche ◽  
G Schmitt ◽  
T Schlossbauer ◽  
MW Jäger ◽  
...  

2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


1994 ◽  
Vol 35 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Pernille Christiansen ◽  
H. B. W. Larsson ◽  
C. Thomsen ◽  
S. B. Wieslander ◽  
O. Henriksen

Sign in / Sign up

Export Citation Format

Share Document