scholarly journals Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance

Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06136
Author(s):  
S.O. Sada ◽  
S.C. Ikpeseni
Author(s):  
Sundar Marimuthu ◽  
Bethan Smith

This manuscript discusses the experimental results on 300 W picosecond laser machining of aerospace-grade nickel superalloy. The effect of the laser’s energetic and beam scanning parameters on the machining performance has been studied in detail. The machining performance has been investigated in terms of surface roughness, sub-surface thermal damage, and material removal rate. At optimal process conditions, a picosecond laser with an average power output of 300 W can be used to achieve a material removal rate (MRR) of ∼140 mm3/min, with thermal damage less than 20 µm. Shorter laser pulse widths increase the material removal rate and reduce the resultant surface roughness. High scanning speeds improve the picosecond laser machining performance. Edge wall taper of ∼10° was observed over all the picosecond laser machined slots. The investigation demonstrates that high-power picosecond lasers can be used for the macro-machining of industrial components at an acceptable speed and quality.


2007 ◽  
Vol 9 (2) ◽  
pp. 137-146 ◽  
Author(s):  
Anshu D. Jayal ◽  
A.K. Balaji ◽  
Richard Sesek ◽  
Adam Gaul ◽  
Dean R. Lillquist

Sign in / Sign up

Export Citation Format

Share Document