Machining Performance and Surface Integrity of SiC Ceramic Machined Using Electrical Discharge Milling and the Mechanical Grinding Compound Process

Author(s):  
R J Ji ◽  
Y H Liu ◽  
Y Z Zhang ◽  
H Li ◽  
X D Cheng
2011 ◽  
Vol 27 (2) ◽  
pp. 221-228 ◽  
Author(s):  
Renjie Ji ◽  
Yonghong Liu ◽  
Yanzhen Zhang ◽  
Fei Wang ◽  
Baoping Cai ◽  
...  

2013 ◽  
Vol 664 ◽  
pp. 806-810
Author(s):  
Ren Jie Ji ◽  
Yong Hong Liu ◽  
Chao Zheng ◽  
Fei Wang ◽  
Yan Zhen Zhang

Advanced engineering ceramics have been widely used in modern industry due to their excellent physical and chemical properties. However, they are difficult to machine due to their high hardness and brittleness. End electrical discharge milling and mechanical grinding compound machining method is employed to machine SiC ceramic in this paper. The process is able to effectively machine a large surface area on SiC ceramic. Furthermore, the tool for the compound machining of SiC ceramic is designed based on the goal of the higher material removal rate, the lower tool wear, and the better machined surface quality. The results show that with the designed tool for the compound machining, the higher material removal rate, the lower tool wear, and the better machined surface quality can be obtained.


2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


Sign in / Sign up

Export Citation Format

Share Document