scholarly journals B-PO05-019 THE ATRIAL-PULMONARY VEIN JUNCTION CONSTITUTES AN ARRHYTHMOGENIC SUBSTRATE

Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S379
Author(s):  
Lisa Amalie Gottlieb ◽  
Charly Belterman ◽  
Shirley van Amersfoorth ◽  
Virginie Loyer ◽  
Marion Constantin ◽  
...  
Cardiology ◽  
2019 ◽  
Vol 143 (3-4) ◽  
pp. 107-113 ◽  
Author(s):  
Naseer Ahmed ◽  
Shahida Perveen ◽  
Adeela Mehmood ◽  
Gulab Fatima Rani ◽  
Giulio Molon

Atrial fibrillation (AF) is the most frequent atrial arrhythmia. During the last few decades, owing to numerous advancements in the field of electrophysiology, we reached satisfactory outcomes for paroxysmal AF with the help of ablation procedures. But the most challenging type is still persistent AF. The recurrence rate of AF in patients with persistent AF is very high, which shows the inadequacy of pulmonary vein isolation (PVI). Over the last few decades, we have been trying to gain insight into AF mechanisms, and have come to the conclusion that there must be some triggers and substrates other than pulmonary veins. According to many studies, PVI alone is not enough to deal with persistent AF. The purpose of our review is to summarize updates and to clarify the role of coronary sinus (CS) in AF induction and propagation. This review will provide updated knowledge on developmental, histological, and macroscopic anatomical aspects of CS with its role as arrhythmogenic substrate. This review will also inform readers about application of CS in other electrophysiological procedures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rebecca Belletti ◽  
Lucia Romero ◽  
Laura Martinez-Mateu ◽  
Elizabeth M. Cherry ◽  
Flavio H. Fenton ◽  
...  

Genetic mutations in genes encoding for potassium channel protein structures have been recently associated with episodes of atrial fibrillation in asymptomatic patients. The aim of this study is to investigate the potential arrhythmogenicity of three gain-of-function mutations related to atrial fibrillation—namely, KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M—using modeling and simulation of the electrophysiological activity of the heart. A genetic algorithm was used to tune the parameters’ value of the original ionic currents to reproduce the alterations experimentally observed caused by the mutations. The effects on action potentials, ionic currents, and restitution properties were analyzed using versions of the Courtemanche human atrial myocyte model in different tissues: pulmonary vein, right, and left atrium. Atrial susceptibility of the tissues to spiral wave generation was also investigated studying the temporal vulnerability. The presence of the three mutations resulted in an overall more arrhythmogenic substrate. Higher current density, action potential duration shortening, and flattening of the restitution curves were the major effects of the three mutations at the single-cell level. The genetic mutations at the tissue level induced a higher temporal vulnerability to the rotor’s initiation and progression, by sustaining spiral waves that perpetuate until the end of the simulation. The mutation with the highest pro-arrhythmic effects, exhibiting the widest sustained VW and the smallest meandering rotor’s tip areas, was KCNE3-V17M. Moreover, the increased susceptibility to arrhythmias and rotor’s stability was tissue-dependent. Pulmonary vein tissues were more prone to rotor’s initiation, while in left atrium tissues rotors were more easily sustained. Re-entries were also progressively more stable in pulmonary vein tissue, followed by the left atrium, and finally the right atrium. The presence of the genetic mutations increased the susceptibility to arrhythmias by promoting the rotor’s initiation and maintenance. The study provides useful insights into the mechanisms underlying fibrillatory events caused by KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M and might aid the planning of patient-specific targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document