scholarly journals Corrigendum to “Hydrothermal pretreatment of chalcopyrite concentrate with copper sulfate solution” Hydrometallurgy Volume 195 (2020) 105359

2020 ◽  
Vol 197 ◽  
pp. 105478
Author(s):  
Aleksei Kritskii ◽  
Stanislav Naboichenko ◽  
Kirill Karimov ◽  
Vivek Agarwal ◽  
Mari Lundström
2020 ◽  
Vol 195 ◽  
pp. 105359
Author(s):  
Kritskii Aleksei ◽  
Naboichenko Stanislav ◽  
Karimov Kirill ◽  
Vivek Agarwal ◽  
Mari Lundström

2021 ◽  
Vol 108 ◽  
pp. 103194
Author(s):  
Francisco R.A. Ziegler-Rivera ◽  
Blanca Prado ◽  
Alfonso Gastelum-strozzi ◽  
Jorge Márquez ◽  
Lucy Mora ◽  
...  

2019 ◽  
Vol 73 (11) ◽  
pp. 945-946
Author(s):  
Rachel Fischer ◽  
Marco Oetken

For aluminum, a new visualization method is presented in which copper is deposited electrochemically. The fingerprint on the aluminum (trace carrier) serves as an insulator as it prevents direct contact between electrolyte and aluminum. The decisive factor is the choice of an ammoniacal copper sulfate solution, which acts as a corrosion inhibitor due to the ammonia molecules. This enables uniform copper deposition on aluminum and thus the development of a clearly defined negative image.


2014 ◽  
Vol 84 (19) ◽  
pp. 2026-2035 ◽  
Author(s):  
Bing Li ◽  
Dapeng Li ◽  
Jiping Wang

A three-axis automatic robot was coupled with a precision liquid dispenser to deposit copper on fabrics to be used as the conductive layer for assembly of textile-based flexible microstrip patch antennas. Two reactive solutions, copper sulfate and sodium borohydride, were sequentially dispensed on fabrics and a conductive copper was produced in situ and in real time, through a simple redox mechanism. Driving pressure, the number of dispensing cycles, concentration and composition (i.e. the addition of a complexing agent sodium citrate to the copper sulfate solution) of the reactive solutions were studied to optimize the dispensing process in favor of rapid copper deposition. The electrical performance of the resulting copper deposit and its adhesion to the textile substrates were characterized. A copper coating of about 0.2 ohm/□ sheet resistance could be prepared in less than 1 hour under a 45 kPa driving pressure, at a 200 mm·s−1 moving speed, and within 60 dispensing cycles.


1983 ◽  
Vol 22 (8) ◽  
pp. 1184-1187 ◽  
Author(s):  
A. Musinu ◽  
G. Paschina ◽  
G. Piccaluga ◽  
M. Magini

Sign in / Sign up

Export Citation Format

Share Document