scholarly journals High-order thalamus modulates top–down inputs from the primary motor cortex on apical tuft dendrites in somatosensory cortex

IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S531
Author(s):  
Young-Eun Han ◽  
Joon Ho Choi ◽  
Jong-Cheol Rah
2018 ◽  
Author(s):  
Michael Lohse ◽  
Matthew Cooper ◽  
Elie Sader ◽  
Antonia Langfelder ◽  
Martin Kahn ◽  
...  

AbstractThe somatosensory and motor systems are intricately linked, providing several routes for the sensorimotor interactions necessary for haptic processing. Here, we used electrical and optogenetic stimulation to study the circuits that enable primary motor cortex (M1) to exert top-down modulation of whisker-evoked responses, at the levels of brain stem, thalamus and somatosensory cortex (S1). We find that activation of M1 drives somatosensory responsive cells at all levels, and that this excitation is followed by a period of tactile suppression, which gradually increases in strength along the ascending somatosensory pathway. Using optogenetic stimulation in the layer-specific Cre driver lines, we find that activation of layer VI cortico-thalamic neurons is sufficient to drive spiking in higher order thalamus, and that this is reliably followed by excitation of S1, suggesting a cross-modal cortico-thalamo-cortical pathway. Cortico-thalamic excitation predicts the degree of subsequent tactile suppression, consistent with a strong role for thalamic circuits in the expression of inhibitory sensorimotor interactions. These results provide evidence of a role for M1 in dynamic modulation of S1, largely under cortico-thalamic control.


2019 ◽  
Author(s):  
Atsushi Fukui ◽  
Hironobu Osaki ◽  
Yoshifumi Ueta ◽  
Yoshihiro Muragaki ◽  
Takakazu Kawamata ◽  
...  

AbstractPrimary motor cortex (M1) infarction occasionally causes sensory impairment. Because sensory signal plays an important role in motor control, sensory impairment compromises recovery and rehabilitation from motor disability. Despite the importance of sensory-motor integration for rehabilitation after M1 infarction, the neural mechanism of the sensory impairment is poorly understood. We show that the sensory processing in the primary somatosensory cortex (S1) was impaired in the acute phase of M1 infarction and recovered in a layer-specific manner in the subacute phase. This layer dependent recovery process and the anatomical connection pattern from M1 to S1 suggested the functional connectivity from M1 to S1 plays a key role in the impairment of sensory processing in S1. The simulation study demonstrated that the loss of inhibition from M1 to S1 in the acute phase of M1 infarction could cause the sensory processing impairment in S1, and the complementation of inhibition could recover the temporal coding. Taken together, we revealed how focal stroke of M1 alters cortical network activity of sensory processing, in which inhibitory input from M1 to S1 may be involved.


2015 ◽  
Vol 523 (16) ◽  
pp. 2372-2389 ◽  
Author(s):  
Limor Avivi-Arber ◽  
Jye-Chang Lee ◽  
Mandeep Sood ◽  
Flavia Lakschevitz ◽  
Michelle Fung ◽  
...  

1997 ◽  
Vol 77 (4) ◽  
pp. 2164-2174 ◽  
Author(s):  
Gereon R. Fink ◽  
Richard S. J. Frackowiak ◽  
Uwe Pietrzyk ◽  
Richard E. Passingham

Fink, Gereon R., Richard S. J. Frackowiak, Uwe Pietrzyk, and Richard E. Passingham. Multiple nonprimary motor areas in the human cortex. J. Neurophysiol. 77: 2164–2174, 1997. We measured the distribution of regional cerebral blood flow with positron emission tomography while three subjects moved their hand, shoulder, or leg. The images were coregistered with each individual's anatomic magnetic resonance scans. The data were analyzed for each individual to avoid intersubject averaging and so to preserve individual gyral anatomy. Instead of inspecting all pixels, we prospectively restricted the data analysis to particular areas of interest. These were defined on basis of the anatomic and physiological literature on nonhuman primates. By examining only a subset of areas, we strengthened the power of the statistical analysis and thereby increased the confidence in reporting single subject data. On the lateral convexity, motor related activity was found for all three subjects in the primary motor cortex, lateral premotor cortex, and an opercular area within the premotor cortex. In addition, there was activation of somatosensory cortex (SI), the supplementary somatosensory area (SII) in the Sylvian fissure, and parietal association areas (Brodmann areas 5 and 40). There was also activation in the insula. We suggest that the activation in the dorsal premotor cortex may correspond with dorsal premotor area (PMd) as described in the macaque brain. We propose three hypotheses as to the probable location of vental premotor area (PMv) in the human brain. On the medial surface, motor-related activity was found for all three subjects in the leg areas of the primary motor cortex and somatosensory cortex and also activity for the hand, shoulder, and leg in the supplementary motor area (SMA) on the dorsal medial convexity and in three areas in the cingulate sulcus. We suggest that the three cingulate areas may correspond with rostral cingulate premotor area, dorsal cingulate motor area (CMAd), and ventral cingulate motor area (CMAv) as identified in the macaque brain. Somatotopic mapping was demonstrated in the primary motor and primary somatosensory cortex. In all three subjects, the arm region lay anterior to the leg region in parietal area 5. Also in all three subjects, the arm region lay anterior to the leg region in the supplementary motor cortex.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
James Kolasinski ◽  
Diana C Dima ◽  
David M A Mehler ◽  
Alice Stephenson ◽  
Sara Valadan ◽  
...  

Abstract The organizing principle of human motor cortex does not follow an anatomical body map, but rather a distributed representational structure in which motor primitives are combined to produce motor outputs. Electrophysiological recordings in primates and human imaging data suggest that M1 encodes kinematic features of movements, such as joint position and velocity. However, M1 exhibits well-documented sensory responses to cutaneous and proprioceptive stimuli, raising questions regarding the origins of kinematic motor representations: are they relevant in top-down motor control, or are they an epiphenomenon of bottom-up sensory feedback during movement? Here we provide evidence for spatially and temporally distinct encoding of kinematic and muscle information in human M1 during the production of a wide variety of naturalistic hand movements. Using a powerful combination of high-field functional magnetic resonance imaging and magnetoencephalography, a spatial and temporal multivariate representational similarity analysis revealed encoding of kinematic information in more caudal regions of M1, over 200 ms before movement onset. In contrast, patterns of muscle activity were encoded in more rostral motor regions much later after movements began. We provide compelling evidence that top-down control of dexterous movement engages kinematic representations in caudal regions of M1 prior to movement production.


Sign in / Sign up

Export Citation Format

Share Document