scholarly journals Multi-server verifiable delegation of computations: Unconditional security and practical efficiency

2021 ◽  
pp. 104740
Author(s):  
Liang Feng Zhang
2019 ◽  
Author(s):  
Bhupender Kumar Soam ◽  
Shweta Bhatia ◽  
Kirti Sharma
Keyword(s):  

Author(s):  
Weina Wang ◽  
Qiaomin Xie ◽  
Mor Harchol-Balter

Cloud computing today is dominated by multi-server jobs. These are jobs that request multiple servers simultaneously and hold onto all of these servers for the duration of the job. Multi-server jobs add a lot of complexity to the traditional one-server-per-job model: an arrival might not "fit'' into the available servers and might have to queue, blocking later arrivals and leaving servers idle. From a queueing perspective, almost nothing is understood about multi-server job queueing systems; even understanding the exact stability region is a very hard problem. In this paper, we investigate a multi-server job queueing model under scaling regimes where the number of servers in the system grows. Specifically, we consider a system with multiple classes of jobs, where jobs from different classes can request different numbers of servers and have different service time distributions, and jobs are served in first-come-first-served order. The multi-server job model opens up new scaling regimes where both the number of servers that a job needs and the system load scale with the total number of servers. Within these scaling regimes, we derive the first results on stability, queueing probability, and the transient analysis of the number of jobs in the system for each class. In particular we derive sufficient conditions for zero queueing. Our analysis introduces a novel way of extracting information from the Lyapunov drift, which can be applicable to a broader scope of problems in queueing systems.


2020 ◽  
Vol 23 (1) ◽  
pp. 1-35 ◽  
Author(s):  
Thang Hoang ◽  
Attila A. Yavuz ◽  
Jorge Guajardo
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Byoung S. Ham

AbstractSo far, unconditional security in key distribution processes has been confined to quantum key distribution (QKD) protocols based on the no-cloning theorem of nonorthogonal bases. Recently, a completely different approach, the unconditionally secured classical key distribution (USCKD), has been proposed for unconditional security in the purely classical regime. Unlike QKD, both classical channels and orthogonal bases are key ingredients in USCKD, where unconditional security is provided by deterministic randomness via path superposition-based reversible unitary transformations in a coupled Mach–Zehnder interferometer. Here, the first experimental demonstration of the USCKD protocol is presented.


Sign in / Sign up

Export Citation Format

Share Document