The EPIC atmospheric model with an isentropic/terrain-following hybrid vertical coordinate

Icarus ◽  
2006 ◽  
Vol 182 (1) ◽  
pp. 259-273 ◽  
Author(s):  
Timothy E. Dowling ◽  
Mary E. Bradley ◽  
Edward Colón ◽  
John Kramer ◽  
Raymond P. LeBeau ◽  
...  
2010 ◽  
Vol 138 (9) ◽  
pp. 3683-3689 ◽  
Author(s):  
Daniel Leuenberger ◽  
Marcel Koller ◽  
Oliver Fuhrer ◽  
Christoph Schär

Abstract Most atmospheric models use terrain-following coordinates, and it is well known that the associated deformation of the computational mesh leads to numerical inaccuracies. In a previous study, the authors proposed a new terrain-following coordinate formulation [the smooth level vertical (SLEVE) coordinate], which yields smooth vertical coordinate levels at mid and upper levels and thereby considerably reduces numerical errors in the simulation of flow past complex topography. In the current paper, a generalization of the SLEVE coordinate is presented by using a modified vertical decay of the topographic signature with height. The new formulation enables an almost uniform thickness of the lowermost computational layers, while preserving the fast transition to smooth levels in the mid and upper atmosphere. This allows for a more consistent and more stable coupling with planetary boundary layer schemes, while retaining the advantages over classic sigma coordinates at upper levels. The generalized SLEVE coordinate is implemented and successfully tested in real-case simulations using an operational nonhydrostatic atmospheric model.


2011 ◽  
Vol 139 (9) ◽  
pp. 2940-2954 ◽  
Author(s):  
Michael D. Toy

Using isentropic coordinates in atmospheric models has the advantage of eliminating the cross-coordinate vertical mass flux for adiabatic flow, and virtually eliminating the associated numerical error in the vertical transport. This is a significant benefit since much of the flow in the atmosphere is approximately adiabatic. Nonadiabatic processes, such as condensational heating, result in a nonzero vertical velocity [Formula: see text] in isentropic coordinates. A method for incorporating condensational heating into a nonhydrostatic atmospheric model based on a hybrid isentropic–sigma vertical coordinate is presented. The model is tested with various 2D moist simulations and the results are compared with those using a traditional terrain-following, height-based sigma coordinate. With the hybrid coordinate, there are improvements in the representation of the developing cloud field in a mountain wave experiment. In a simulation of deep convection, the adaptive hybrid coordinate successfully simulates the turbulent nature of the convection, while maintaining the quasi-Lagrangian nature of the isentropic coordinate in the surrounding dry air. The vertical cross-coordinate mass flux is almost zero in the environmental air, as well as in the stratosphere above the convective tower.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wen-yih Sun

In the terrain following coordinate, Gal-Chen and Somerville (1975) and other proposed a vertical coordinate  z*=(z-zb)/(zt-zb) and constant spatial intervals of dx* and  dy*along the other directions.  Because the variation of  and  was ignored, their coordinate does not really follow the terrain.  It fails to reproduce the divergence and curl over a complex terrain.  Aligning the coordinate with real terrain, the divergence and curl we obtained from the curvilinear coordinate are consistent with the Cartesian coordinate.  With a modification, the simulated total mass, energy, and momentum from the Navier-Stokes equations are conserved and in agreement with those calculated from Cartesian coordinate.


2020 ◽  
Vol 148 (10) ◽  
pp. 4143-4158
Author(s):  
Syed Zahid Husain ◽  
Claude Girard ◽  
Leo Separovic ◽  
André Plante ◽  
Shawn Corvec

AbstractA modified hybrid terrain-following vertical coordinate has recently been implemented within the Global Environmental Multiscale atmospheric model that introduces separately controlled height-dependent progressive decaying of the small- and large-scale orography contributions on the vertical coordinate surfaces. The new vertical coordinate allows for a faster decay of the finescale orography imprints on the coordinate surfaces with increasing height while relaxing the compression of the lowest model levels over complex terrain. A number of tests carried out—including experiments involving Environment and Climate Change Canada’s operational regional and global deterministic prediction systems—demonstrate that the new vertical coordinate effectively eliminates terrain-induced spurious generation and amplification of upper-air vertical motion and kinetic energy without increasing the computational cost. Results also show potential improvements in precipitation over complex terrain.


2021 ◽  
Author(s):  
Jerome Chanut ◽  
James Harle ◽  
Tim Graham ◽  
Laurent Debreu

<p>The NEMO platform possesses a versatile block-structured refinement capacity thanks to the AGRIF library. It is however restricted up to versions 4.0x, to the horizontal direction only. In the present work, we explain how we extended the nesting capabilities to the vertical direction, a feature which can appear, in some circumstances, as beneficial as refining the horizontal grid.</p><p>Doing so is not a new concept per se, except that we consider here the general case of child and parent grids with possibly different vertical coordinate systems, hence not logically defined from each other as in previous works. This enables connecting together for instance z (geopotential), s (terrain following) or eventually ALE (Arbitrary Lagrangian Eulerian) coordinate systems. In any cases, two-way exchanges are enabled, which is the other novel aspect tackled here.  </p><p>Considering the vertical nesting procedure itself, we describe the use of high order conservative and monotone polynomial reconstruction operators to remap from parent to child grids and vice versa. Test cases showing the feasibility of the approach are presented, with particular attention on the connection of s and z grids in the context of gravity flow modelling. This work can be considered as a preliminary step towards the application of the vertical nesting concept over major overflow regions in global realistic configurations. The numerical representation of these areas is indeed known to be particularly sensitive to the vertical coordinate formulation. More generally, this work illustrates the typical methodology from the development to the validation of a new feature in the NEMO model.</p>


2014 ◽  
Vol 142 (3) ◽  
pp. 1183-1196 ◽  
Author(s):  
Claude Girard ◽  
André Plante ◽  
Michel Desgagné ◽  
Ron McTaggart-Cowan ◽  
Jean Côté ◽  
...  

Abstract The Global Environmental Multiscale (GEM) model is the Canadian atmospheric model used for meteorological forecasting at all scales. A limited-area version now also exists. It is a gridpoint model with an implicit semi-Lagrangian iterative space–time integration scheme. In the “horizontal,” the equations are written in spherical coordinates with the traditional shallow atmosphere approximations and are discretized on an Arakawa C grid. In the “vertical,” the equations were originally defined using a hydrostatic-pressure coordinate and discretized on a regular (unstaggered) grid, a configuration found to be particularly susceptible to noise. Among the possible alternatives, the Charney–Phillips grid, with its unique characteristics, and, as the vertical coordinate, log-hydrostatic pressure are adopted. In this paper, an attempt is made to justify these two choices on theoretical grounds. The resulting equations and their vertical discretization are described and the solution method of what is forming the new dynamical core of GEM is presented, focusing on these two aspects.


2002 ◽  
Vol 130 (10) ◽  
pp. 2459-2480 ◽  
Author(s):  
Christoph Schär ◽  
Daniel Leuenberger ◽  
Oliver Fuhrer ◽  
Daniel Lüthi ◽  
Claude Girard

2019 ◽  
Vol 34 (3) ◽  
pp. 773-780 ◽  
Author(s):  
Jung-Hoon Kim ◽  
Robert D. Sharman ◽  
Stanley G. Benjamin ◽  
John M. Brown ◽  
Sang-Hun Park ◽  
...  

Abstract Spurious mountain-wave features have been reported as false alarms of light-or-stronger numerical weather prediction (NWP)-based cruise level turbulence forecasts especially over the western mountainous region of North America. To reduce this problem, a hybrid sigma–pressure vertical coordinate system was implemented in NOAA’s operational Rapid Refresh model, version 4 (RAPv4), which has been running in parallel with the conventional terrain-following coordinate system of RAP version 3 (RAPv3). Direct comparison of vertical velocity |w| fields from the RAPv4 and RAPv3 models shows that the new RAPv4 model significantly reduces small-scale spurious vertical velocities induced by the conventional terrain-following coordinate system in the RAPv3. For aircraft-scale turbulence forecasts, |w| and |w|/Richardson number (|w|/Ri) derived from both the RAPv4 and RAPv3 models are converted into energy dissipation rate (EDR) estimates. Then, those EDR-scaled indices are evaluated using more than 1.2 million in situ EDR turbulence reports from commercial aircraft for 4 months (September–December 2017). Scores of the area under receiver operating characteristic curves for the |w|- and |w|/Ri-based EDR forecasts from the RAPv4 are 0.69 and 0.83, which is statistically significantly improved over the RAPv3 of 0.63 and 0.77, respectively. The new RAPv4 became operational on 12 July 2018 and provides better guidance for operational turbulence forecasting over North America.


2020 ◽  
Vol 35 (3) ◽  
pp. 1081-1096 ◽  
Author(s):  
Jeffrey Beck ◽  
John Brown ◽  
Jimy Dudhia ◽  
David Gill ◽  
Tracy Hertneky ◽  
...  

Abstract A new hybrid, sigma-pressure vertical coordinate was recently added to the Weather Research and Forecasting (WRF) Model in an effort to reduce numerical noise in the model equations near complex terrain. Testing of this hybrid, terrain-following coordinate was undertaken in the WRF-based Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) models to assess impacts on retrospective and real-time simulations. Initial cold-start simulations indicated that the majority of differences between the hybrid and traditional sigma coordinate were confined to regions downstream of mountainous terrain and focused in the upper levels. Week-long retrospective simulations generally resulted in small improvements for the RAP, and a neutral impact in the HRRR when the hybrid coordinate was used. However, one possibility is that the inclusion of data assimilation in the experiments may have minimized differences between the vertical coordinates. Finally, analysis of turbulence forecasts with the new hybrid coordinate indicate a significant reduction in spurious vertical motion over the full length of the Rocky Mountains. Overall, the results indicate a potential to improve forecast metrics through implementation of the hybrid coordinate, particularly at upper levels, and downstream of complex terrain.


Sign in / Sign up

Export Citation Format

Share Document