Calculation of overall heat transfer coefficients in a triple tube heat exchanger

2004 ◽  
Vol -1 (1) ◽  
pp. 1-1
Author(s):  
Ediz Batmaz ◽  
K. P. Sandeep
2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Devanand D. Chillal ◽  
◽  
Uday C. Kapale ◽  
N.R. Banapurmath ◽  
T. M. Yunus Khan ◽  
...  

The work presented is an effort to realize the changes occurring for convective coefficients of heat transfer in STHX fitted with inclined baffles. Effort has been undertaken using Fluent, a commercially available CFD code ona CAD model of small STHX with inclined baffles with cold liquid flowing into the tubes and hot liquid flowing in the shell. Four sets of CFD analysis have been carried out. The hot liquid flow rate through shell compartments varied from 0.2 kg/sec to 0.8 kg/sec in steps of 0.2 kg/sec, while keeping the cold liquid flow condition in tube at 0.4 kg/sec constant. Heat transfer rates, compartment temperatures, and overall heat transfer coefficients, for cold liquid and hot liquid, were studied. The results given by the software using CFD approach were appreciable and comparatively in agreement with the results available by the experimental work, which was undertaken for the same set of inlet pressure conditions, liquid flow rates, and inlet temperatures of liquid for both hot and cold liquids. The experimental output results were also used to validate the results given by the CFD software. The results from the CFD analysis were further used to conclude the effect of baffle inclination on heat duty. The process thus followed also helped realize the effects of baffle inclination on convective heat transfer coefficient of the liquid flow through the shell in an inclined baffle shell and tube heat exchanger. The temperature plots for both cold and hot liquid were also generated for understanding the compartmental temperature distributions inclusive of the inlet and outlet compartments. The heat duty for a heat exchanger has been found to increase with the increase in baffle inclinations from zero degree to 20 degrees. Likewise, the convective heat transfer coefficients have also been found to increase with the increase in baffle inclinations.


1984 ◽  
Vol 106 (4) ◽  
pp. 735-742 ◽  
Author(s):  
Y. Yamada ◽  
M. Akai ◽  
Y. Mori

The heat transfer performance of a crossflow shell-and-tube heat exchanger for high-temperature use in which heat transfer is augmented by the use of wall radiation in both shell and tube sides, is studied. Radiation plates are inserted in the shell side, and twisted cross-tapes in the tube side. Overall heat transfer coefficients are measured to be about a maximum 80 percent larger than those without radiation, where the inlet temperatures of the hot gas range up to 800 °C, while those of the cold gas are about room temperature. Analytical results agree well with experimental results, and an approximate calculation procedure is found to be simple and accurate enough for practical use.


1985 ◽  
Vol 107 (2) ◽  
pp. 345-353 ◽  
Author(s):  
E. M. Sparrow ◽  
J. A. Perez

Per-tube heat transfer coefficients and per-compartment and intracompartment pressure drops were measured on the shell side of a shell and tube heat exchanger. The main focus of the work was to determine the response of these quantities to variations in the size of the baffle window; the Reynolds number was also varied parametrically. The pressure measurements showed that the fluid flow is fully developed downstream of the first compartment of the heat exchanger and that the per-compartment pressure drop is constant in the fully developed regime. Within a compartment, the pressure drop in the upstream half is much larger than that in the downstream half. The per-tube heat transfer coefficients vary substantially within a given compartment (on the order of a factor of two), giving rise to a nonuniform thermal loading of the tubes. Row-average and compartment-average heat transfer coefficients were also evaluated. The lowest row-average coefficients were those for the first and last rows in a compartment, while the highest coefficient is that for the row just upstream of the baffle edge. It was demonstrated that the per-tube heat transfer coefficients are streamwise periodic for a module consisting of two consecutive compartments.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1157
Author(s):  
Hamad Mohammad AlHajeri ◽  
Abdulrahman Almutairi ◽  
Mohamad Hamad Al-Hajeri ◽  
Abdulrahman Alenezi ◽  
Rashed ALajmi ◽  
...  

The results of an experimental study to evaluate the characteristics of R-407C thermofluid during condensation in a helically coiled copper tube heat exchanger are presented. The effects of saturation temperature (Tsat), and mass and heat fluxes of refrigerant R-407C on thermal performance and pressure drop were determined. The relationship between the refrigerant wall subcooling and heat transfer coefficients was also investigated. This paper reports the effect of the temperature of the water used as cooling medium on the heat transfer rate of condensing R-407C. The study was conducted with mass flux of R-407C in the range of 100–450 kg/m2s, mass flux of the coolant water in the range of 500–5000 kg/m2s and Tsat of 31 °C, 35 °C, and 39 °C. Compared with a straight smooth tube, the use of the helical coiled (helicoidal) tube increased the condensation rate with a corresponding pressure drop that depended on the value of Tsat of the refrigerant and temperature of the coolant.


2021 ◽  
Vol 1021 ◽  
pp. 160-170
Author(s):  
Amer Hameed Majeed ◽  
Yasmin Hamed Abd

The effect of adding nanomaterial of aluminum oxide (Al2O3), titanium oxide (TiO2) and zirconium oxide (ZrO2) in different concentrations of 0.25, 0.5, 0.75, 1.0, and 1.25 g/L to the cold fluid (water) turbulently flowing with different flow rates of 75, 100, 125, 150, and 175 L/min in tube side countercurrently to hot water flowing with a constant flow rate of 60 L/min in the shell side of shell and tube heat exchanger on the heat transfer rates and overall heat transfer coefficients are experimentally studied. It is found that the addition of nanomaterials gives rise to outlet cold (nano) fluids temperatures causing to enhancement averagely 7.74, 11.25, and 17.38 percent for ZrO2, TiO2, and Al2O3 respectively in heat transfer rate and averagely 12.72, 19.47, and 28.71 percent for ZrO2, TiO2, and Al2O3 respectively in overall heat transfer coefficients. The maximum enhancement values in heat transfer rates and in overall heat transfer coefficients are attained at a flow rate of 150 L/min of cold fluid.


Sign in / Sign up

Export Citation Format

Share Document