Forced convection heat and mass transfer flow of a nanofluid through a porous channel with a first order chemical reaction on the wall

Author(s):  
Meisam Habibi Matin ◽  
Ioan Pop
1979 ◽  
Vol 44 (5) ◽  
pp. 1388-1396
Author(s):  
Václav Kolář ◽  
Zdeněk Brož

Relations describing the mass transfer accompanied by an irreversible first order chemical reaction are derived, based on the formerly published general theoretical concepts of interfacial mass transfer. These relations are compared with experimental results taken from literature.


Author(s):  
R. Mohapatra ◽  
B. Mahanthesh ◽  
B.J. Gireesha ◽  
S.R. Mishra

AbstractIn many chemical engineering processes, a chemical reaction between a foreign mass and the fluid does occur. These processes find relevance in polymer production, oxidation of solid materials, ceramics or glassware manufacturing, tubular reactors, food processing, and synthesis of ceramic materials. Therefore, an exploration of homogeneous first-order chemical reaction effects on heat and mass transfer along with entropy analysis of Jeffrey liquid flow towards a stretched isothermal porous sheet is performed. Fluid is conducting electrically in the company of transverse magnetic field. Variations in heat and mass transfer mechanisms are accounted in the presence of viscous dissipation, heat source/sink and cross-diffusion aspects. The partial differential equations system governing the heat transfer of Jeffery liquid is reformed to the ordinary differential system through relevant transformations. Numerical solutions based on Runge-Kutta shooting method are obtained for the subsequent nonlinear problem. A parametric exploration is conducted to reveal the tendency of the solutions. The present study reveals that the Lorentz force due to magnetism can be used as a key parameter to control the flow fields. Entropy number is larger for higher values of Deborah and Brinkman numbers. It is also established that the concentration species field and its layer thickness of the Jeffery liquid decreases for a stronger chemical reaction aspect. To comprehend the legitimacy of numerical results a comparison with the existing results is made in this exploration and alleged an admirable agreement.


2014 ◽  
Vol 31 (1) ◽  
pp. 91-104 ◽  
Author(s):  
G. S. Seth ◽  
S. Sarkar

AbstractAn investigation of unsteady hydromagnetic natural convection heat and mass transfer flow of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving infinite vertical plate embedded in a uniform porous medium in a rotating system with Hall effects in the presence of homogeneous first order chemical reaction is carried out when temperature of the plate has a temporarily ramped profile. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters. In order to highlight the influence of ramped temperature distribution within the plate on the flow-field, the fluid flow past a ramped temperature plate is compared with the one past an isothermal plate.


Sign in / Sign up

Export Citation Format

Share Document