scholarly journals Detection of circulating fungal DNA by polymerase chain reaction in a fatal case of Cunninghamella bertholletiae infection

IDCases ◽  
2020 ◽  
Vol 20 ◽  
pp. e00760
Author(s):  
Rika Hiramoto ◽  
Mitsuru Miyachi ◽  
Yoshihiro Nitta ◽  
Hideki Yoshida ◽  
Yasumichi Kuwahara ◽  
...  
2021 ◽  
pp. 030098582199156
Author(s):  
Alexandra N. Myers ◽  
Unity Jeffery ◽  
Zachary G. Seyler ◽  
Sara D. Lawhon ◽  
Aline Rodrigues Hoffmann

Molecular techniques are increasingly being applied to stained cytology slides for the diagnosis of neoplastic and infectious diseases. Such techniques for the identification of fungi from stained cytology slides have not yet been evaluated. This study aimed to assess the diagnostic accuracy of direct (without nucleic acid isolation) panfungal polymerase chain reaction (PCR) followed by sequencing for identification of fungi and oomycetes on stained cytology slides from dogs, cats, horses, and other species. Thirty-six cases were identified with cytologically identifiable fungi/oomycetes and concurrent identification via fungal culture or immunoassay. Twenty-nine controls were identified with no cytologically or histologically visible organisms and a concurrent negative fungal culture. Direct PCR targeting the internal transcribed spacer region followed by sequencing was performed on one cytology slide from each case and control, and the sensitivity and specificity of the assay were calculated. The sensitivity of the panfungal PCR assay performed on stained cytology slides was 67% overall, 73% excluding cases with oomycetes, and 86% when considering only slides with abundant fungi. The specificity was 62%, which was attributed to amplification of fungal DNA from control slides with no visible fungus and negative culture results. Direct panfungal PCR is capable of providing genus- or species-level identification of fungi from stained cytology slides. Given the potential of panfungal PCR to amplify contaminant fungal DNA, this assay should be performed on slides with visible fungi and interpreted in conjunction with morphologic assessment by a clinical pathologist.


2018 ◽  
Vol 48 (6) ◽  
Author(s):  
Marcelo Marques da Silveira ◽  
Stéfhano Luis Cândido ◽  
Karin Rinaldi dos Santos ◽  
Maerle Oliveira Maia ◽  
Roberto Lopes de Souza ◽  
...  

ABSTRACT: Sepsis is characterized by the presence of organ dysfunction secondary to the dysregulated systemic inflammatory response associated with an infection, and has high mortality rates. Traditional diagnostic techniques based on non-microbiological isolation are time-consuming and may delay treatment. Thus, this study aimed to compare bacterial and fungal broad-range polymerase chain reaction (PCR) and blood culture for diagnosis of sepsis in dogs. Blood samples from 88 dogs with suspected sepsis were analyzed by blood culture, and PCR to detect bacterial and fungal DNA. On blood culture, 20 (22.7%) samples tested positive for bacterial isolates; however, none tested positive for fungi. Through PCR analysis, bacterial DNA was detected in 46 (52.3%) animals, whereas fungal DNA was present in one (1.1%) sample. Our results showed that PCR-based testing has important diagnostic value for canine blood infections because it has a shorter turnaround time and higher sensitivity than traditional blood culture.


2006 ◽  
Vol 56 (4) ◽  
pp. 387-393 ◽  
Author(s):  
Alicia Gomez-Lopez ◽  
Mayte T. Martin-Gomez ◽  
Pilar Martin-Davila ◽  
Pedro Lopez-Onrubia ◽  
Joan Gavalda ◽  
...  

2009 ◽  
Vol 124 (2) ◽  
pp. 152-160 ◽  
Author(s):  
S M El-Morsy ◽  
Y W Khafagy ◽  
M M El-Naggar ◽  
A A Beih

AbstractObjective:This study investigated allergic fungal rhinosinusitis cases, and aimed to compare the detection of fungi in sinus aspirate by culture and by polymerase chain reaction assay, and to relate the presence of fungi in the nasal sinuses to the type of fungal allergen causing disease.Methods:Sixty-eight cases of allergic fungal rhinosinusitis underwent fungal culture and polymerase chain reaction assay for universal fungal, aspergillus and bipolaris DNA. Aspergillus-specific immunoglobulin E levels were measured in sinus aspirate, and total serum immunoglobulin E levels were calculated. A control group of 10 cases was included in the study.Results:Of the 68 allergic fungal rhinosinusitis cases, only 42 (61.7 per cent) had positive fungal cultures; of the 10 controls, only three (30 per cent) had positive cultures. Species from the dematiaceous family were most commonly grown, being isolated in 30 cases (71.4 per cent). Bipolaris was the most commonly isolated species (18 cases) followed by curvularia (11 cases) and alternaria (one case). Polymerase chain reaction assay detected fungal DNA in all the allergic fungal rhinosinusitis cases and also in four controls (40 per cent). Ten patients (of 68; 14.7 per cent) were positive forAspergillus fumigatusspecific immunoglobulin E. The mean concentration of this immunoglobulin was 11.32 ± 4.12 IU/ml in patients and 0 IU/ml in controls, a statistically significant difference.Conclusion:Detection of fungal DNA in nasal aspirate by polymerase chain reaction was superior to fungal cultures as a method of detecting fungal growth. In allergic fungal rhinosinusitis, fungal growth is not always accompanied by an allergic reaction.


Respirology ◽  
2004 ◽  
Vol 9 (3) ◽  
pp. 397-401 ◽  
Author(s):  
Makoto KOBAYASHI ◽  
Kazuto TOGITANI ◽  
Hisanori MACHIDA ◽  
Yoshiki UEMURA ◽  
Yuji OHTSUKI ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 515
Author(s):  
Zhen Qiao ◽  
Huifang Liu ◽  
Geun Su Noh ◽  
Bonhan Koo ◽  
Qingshuang Zou ◽  
...  

Invasive aspergillosis (IA) is an important cause of morbidity and mortality among immunocompromised people. Imaging and specimen tests used in the clinical diagnosis of aspergillosis with weak and indistinct defects leads to delay in the treatment of early aspergillosis patients. The developing molecular techniques provide a new method for the aspergillosis diagnosis. However, the existing methods are complex, time-consuming and may even be potentially hazardous. In this study, we developed a simple and rapid Aspergillus fumigatus spores DNA isolation assay using synthesized zinc oxide (ZnO). ZnO nanoparticles were used to take the place of the traditional commercial lysis buffer. The quality and quantity of the extracted DNA were sufficient for further diagnostics with polymerase chain reaction (PCR) analysis. This method offers easy, green, and economic alternative DNA isolation for the diagnosis of invasive aspergillosis.


Sign in / Sign up

Export Citation Format

Share Document