scholarly journals A Novel Torque Controller with Direct Flux Control for Permanent Magnet Synchronous Motor

2017 ◽  
Vol 50 (1) ◽  
pp. 11589-11594 ◽  
Author(s):  
Hongqing Chu ◽  
Hong Chen ◽  
Bingzhao Gao ◽  
Haiyan Zhao
Author(s):  
Kenneth Odo ◽  
Chibuike Ohanu ◽  
Ifeanyi Chinaeke-Ogbuka ◽  
Augustine Ajibo ◽  
Cosmas Ogbuka ◽  
...  

<span lang="EN-US">This work presents a novel direct torque and flux control (DTFC) of permanent magnet synchronous motor (PMSM) with analytically-tuned proportional integral (PI) controllers. The proportional (K_p) and integral (K_i) gains of the PI controllers were accurately determined, from first principle, using the model of the control system. The PI flux and torque controllers were then developed in rotor reference frame. The designed PI controllers, together with the torque and flux controllers, were tested on a permanent magnet synchronous motor (PMSM). The results obtained were compared with results from conventional DTFC system using manually-tuned PI controllers. The total harmonic distortion (THD) of motor phase currents is 18.80% and 4.81% for the conventional and proposed models respectively. This confirms a significant reduction in torque ripples. The control system was tested for step torque loading and found to offer excellent performance both during load changes, speed reversal, and constant load conditions.</span>


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 769 ◽  
Author(s):  
Guozheng Zhang ◽  
Chen Chen ◽  
Xin Gu ◽  
Zhiqiang Wang ◽  
Xinmin Li

In conventional model predictive control, the dimensions of the control variables are different from each other, which makes adjusting the weighted factors in the cost function complicated. This issue can be solved by adopting the model predictive flux control. However, the performance of the electromagnetic torque is affected by the change of the cost function. A novel model predictive torque control of the interior permanent magnet synchronous motor is presented in this paper, and the cost function involving the excitation torque and reluctance torque is established. Combined with the model predictive flux control and discrete space vector modulation, the current ripple and torque ripple are reduced. The performance of torque under an overload condition is superior to model predictive flux control. The effectiveness of the proposed algorithm is verified by the simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document