field weakening
Recently Published Documents


TOTAL DOCUMENTS

473
(FIVE YEARS 91)

H-INDEX

32
(FIVE YEARS 5)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 530
Author(s):  
Maria Dems ◽  
Krzysztof Komeza ◽  
Jacek Szulakowski ◽  
Witold Kubiak

Speed-controlled induction motors have the most significant potential for energy savings. The greatest problems with obtaining high efficiency occur in motors with a wide range of rotational speed regulation, as in the motors for driving industrial washing machines under consideration. While for the highest speeds, the dominant phenomenon is at field weakening. The problem is obtaining the optimal size of the magnetic flux for low rotation speed to prevent excessive saturation increasing current, and reduction of efficiency. This problem is usually solved by selecting the appropriate control for an already built machine. The authors propose a combination of activities when designing the motor structure with the selection of proper control, which allows for high efficiency. Since the drive does not require precise speed control or obtaining the required dynamics, it was possible to use an inexpensive control in an open loop, avoiding the cost of transmitters. Furthermore, the number of design parameters that are subject to change is significantly limited by technological factors and the available space in the washing machine. Proper parameter selection was made using a peripheral method assisted by field-circuit simulations. The proposed approach can be used in designing structures and selecting motors controls for other applications.


2021 ◽  
Vol 263 (4) ◽  
pp. 2875-2886
Author(s):  
Jiping Zhang ◽  
Zheming Wang ◽  
Heng Ma ◽  
Weike Wang

The facade insulation (FI) is one choice for Road traffic noise (RTN) at a high-rise accommodation building nearby a motor road. The weakness of FI is from window, so the window insulation (WI) is also a prioritized descriptor. ISO16283-3 states a field method to measure FI using RTN. However, in room acoustics, besides FI, reverberation time (RBT) or indoor average sound absorption (IASB) are another two un-ignorable descriptors. When the value of IASB is small, the indoor noise is not only contributed from penetrating façade RTN, but also supplemented by the residual sound from high reverberation field, weakening FI. As a parallel to ISO16283-3, this paper suggests an engineering method to measure RBT and IASB of one high-rise building room close to a motor road by penetrating façade RTN. It can supply a convenient tool for the field measurement of RBT and IASB with RTN. At the end, we made a field measurement of RBT, IASB, and WI at a hotel room nearby a viaduct in Hangzhou of China, assistant to adjust RBT or IASB and WI so as to improve the sound quality of the hotel. Further, the method can extend to the lines of rail, aviation, and shipping.


2021 ◽  
Vol 12 (1) ◽  
pp. 1-9
Author(s):  
Pudji Irasari ◽  
Ketut Wirtayasa ◽  
Puji Widiyanto ◽  
Muhammad Fathul Hikmawan ◽  
Muhammad Kasim

Permanent magnet motors (PMMs) are widely used in electric vehicles because of their benefits. Based on the permanent magnet topologies on the rotor, PMMs are classified into three types: surface mounted PMM, inset PMM, and interior PMM. This paper discusses a comparison of the characteristics of interior and inset types of PMMs for electric vehicle applications. The study aims to find out the effect of the rotor construction on the magnetic characteristics, torque-speed characteristics, and cogging torque. Simulations were carried out analytically and numerically using the FEMM 4.2 software. The simulation results at the base speed show that the interior PMM generates a higher torque but with a lower rotation, namely 56.47 Nm and 3162 rpm, respectively, while the inset PMM produces higher rotation 4200 rpm but lower output torque of 46.01 Nm. However, with a higher saliency ratio, the interior PMM produces higher maximum torque and speed at both constant torque and field weakening regions than the PMM inset, which is 92.87 Nm and 6310 rpm, consecutively. In terms of cogging torque, the interior PMM raises it slightly higher (2.90 Nm) than the inset PMM (1.93 Nm). The results conclude that, in general, the interior PMM shows better performance in all studied regions and is preferable for electric vehicle applications.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3758
Author(s):  
Min-Jae Jeong ◽  
Kang-Been Lee ◽  
Hyun-Jo Pyo ◽  
Dong-Woo Nam ◽  
Won-Ho Kim

This paper describes a study on the improvement of the dehydration performance of the conventional washing machine model. Recently, as interest in improving the dehydration performance of washing machines has increased, the need for a study on a high-speed electric motor has emerged. However, this conventional spoke-type PMSM has difficulty in speeding up due to the following problems. First, field weakening control is indispensable for high-speed operation of an electric motor. This control method is a big problem in causing torque drop and irreversible demagnetization of the motor. Moreover, the centrifugal force increases during high-speed operation, which adversely affects the stiffness of the motor. Therefore, in this paper, a new rotor shape of spoke-type PMSM was proposed to solve the above problem.


Sign in / Sign up

Export Citation Format

Share Document