scholarly journals Surface Effect Ship with Four Air Cushions Part II: Roll and Pitch Damping

2019 ◽  
Vol 52 (21) ◽  
pp. 134-139 ◽  
Author(s):  
Ola M. Haukeland ◽  
Vahid Hassani ◽  
Øyvind Auestad
2013 ◽  
Vol 29 (02) ◽  
pp. 84-91
Author(s):  
Stefanos Koullias ◽  
Santiago Balestrini Robinson ◽  
Dimitri N. Mavris

The purpose of this study is to obtain insight into surface effect ship (SES) endurance without reliance on historical data as a function of geometry, displacement, and technology level. First-principle models of the resistance, structures, and propulsion system are developed and integrated to predict large SES endurance and to suggest the directions that future large SESs will take. It is found that large SESs are dominated by structural weight, which indicates the need for advanced materials and complex structures, and that advanced propulsion cycles can increase endurance by up to 33%. SES endurance is shown to be a nonlinear discontinuous function of geometry, displacement, and technology level that cannot be predicted by simplified models or assumptions.


2003 ◽  
Vol 40 (01) ◽  
pp. 42-48
Author(s):  
Chang Doo Jang ◽  
Ho Kyung Kim ◽  
Ha Cheol Song

A surface effect ship is known to be comparable to a high-speed ship. For the structural design of surface effect ships, advanced design methods are needed which can reflect the various loading conditions different from those of conventional ships. Also, minimum weight design is essential because hull weight significantly affects the lift, thrust powering and high-speed performance. This paper presents the procedure of optimum structural design and a computer program to minimize the hull weight of surface effect ships built of composite materials. By using the developed computer program, the optimum structural designs for three types of surface effect ships—built of sandwich plate only, stiffened single skin plate only, and both plates—are carried out and the efficiency of each type is investigated in terms of weight. The computer program, developed herein, successfully reduced the hull weight of surface effect ships by 15–30% compared with the original design. Numerical results of optimum structural designs are presented and discussed.


2010 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
Hiromichi Akimoto ◽  
Syozo Kubo ◽  
Makoto Kanehira

2017 ◽  
Author(s):  
Kevin Silva ◽  
Andrew Silver ◽  
Kenneth Weems ◽  
David Wundrow ◽  
Sheguang Zhang

As the operational requirements of landing craft expand to faster speeds and higher sea states, more complex hullforms are being proposed to meet these requirements. The seakeeping performance of such vessels can become difficult to predict. Analytical tools must be flexible in order to handle the variety of operating conditions, hull geometries, loading conditions, and other attributes. The analytical seakeeping models should be based on the physical models of the hydrodynamic phenomena rather than case-specific empirical tuning. This paper describes a study that evaluated the ability of the Large Amplitude Motion Program (LAMP) to simulate traditional and non-traditional landing craft hullforms in varying operating conditions. The hullforms include a traditional semi-planing monohull, a semi-planing water jet propelled “W” shaped hull, a water jet propelled catamaran, and a catamaran Surface Effect Ship (SES) style hull. The measures taken to model each hullform and test conditions in LAMP are discussed and the correlation between experimental data and LAMP predictions are presented through comparisons of motions and accelerations.


1978 ◽  
Vol 22 (02) ◽  
pp. 110-122
Author(s):  
A. S. Hananel ◽  
E. J. Dent ◽  
E. J. Philips ◽  
S. H. Chang

To avoid the conservativeness in the large surface-effect ship hull design which results from simplifying assumptions in the stress analysis, the hull structure was analyzed as a three-dimensional elastic body. The NASTRAN finite-element program, level 15.0, was selected for use in this analysis as the most suitable program available. A finite-element model representing the true hull stiffness was used in obtaining the internal load and displacement distributions. The inertia effect of the ship masses was included with each set of static loads. This was done by using the Static Analysis with Inertia Relief solution included in NASTRAN. The stress redistribution around cutouts in the hull was treated in a separate study. The interaction between hull and deckhouse was investigated by attaching a model of the deckhouse onto the hull model, and then solving for the appropriate load conditions. The natural frequencies were obtained using a reduced finite-element model of both the hull and hull/deckhouse combination. A new technique was developed for determining the dynamic stresses and their proper superposition on the static stresses.


1981 ◽  
Vol 25 (01) ◽  
pp. 44-61
Author(s):  
C. H. Kim ◽  
S. Tsakonas

The analysis presents a practical method for evaluating the added-mass and damping coefficients of a heaving surface-effect ship in uniform translation. The theoretical added-mass and damping coefficients and the heave response show fair agreement with the corresponding experimental values. Comparisons of the coupled aero-hydrodynamic and uncoupled analytical results with the experimental data prove that the uncoupled theory, dominant for a long time, that neglects the free-surface effects is an oversimplified procedure. The analysis also provides means of estimating the wave elevation of the free surface, the escape area at the stern and the volume which are induced by a heaving surface-effect ship in uniform translation in otherwise calm water. Computational procedures have been programmed in the FORTRAN IV language and adapted to the PDP-10 high-speed digital computer.


2012 ◽  
Vol 56 (3) ◽  
pp. 183-196 ◽  
Author(s):  
Lawrence J. Doctors

2013 ◽  
Vol 29 (2) ◽  
pp. 84-91
Author(s):  
Stefanos Koullias ◽  
Santiago Balestrini Robinson ◽  
Dimitri N. Mavris

Sign in / Sign up

Export Citation Format

Share Document