scholarly journals A Backstepping-based observer for estimation of thermoacoustic oscillations in a Rijke tube with in-domain measurements

2020 ◽  
Vol 53 (2) ◽  
pp. 7521-7526
Author(s):  
Gustavo Artur de Andrade ◽  
Rafael Vazquez
2016 ◽  
Vol 49 (8) ◽  
pp. 48-53 ◽  
Author(s):  
Gustavo A. de Andrade ◽  
Rafael Vazquez ◽  
Daniel J. Pagano

Author(s):  
Luca Magri ◽  
Matthew P. Juniper

In this paper, we develop a linear technique that predicts how the stability of a thermoacoustic system changes due to the action of a generic passive feedback device or a generic change in the base state. From this, one can calculate the passive device or base state change that most stabilizes the system. This theoretical framework, based on adjoint equations, is applied to two types of Rijke tube. The first contains an electrically heated hot wire, and the second contains a diffusion flame. Both heat sources are assumed to be compact, so that the acoustic and heat release models can be decoupled. We find that the most effective passive control device is an adiabatic mesh placed at the downstream end of the Rijke tube. We also investigate the effects of a second hot wire and a local variation of the cross-sectional area but find that both affect the frequency more than the growth rate. This application of adjoint sensitivity analysis opens up new possibilities for the passive control of thermoacoustic oscillations. For example, the influence of base state changes can be combined with other constraints, such as that the total heat release rate remains constant, in order to show how an unstable thermoacoustic system should be changed in order to make it stable.


Author(s):  
Francesco Garita ◽  
Hans Yu ◽  
Matthew P. Juniper

Abstract We combine a thermoacoustic experiment with a thermoacoustic reduced order model using Bayesian inference to accurately learn the parameters of the model, rendering it predictive. The experiment is a vertical Rijke tube containing an electric heater. The heater drives a base flow via natural convection, and thermoacoustic oscillations via velocity-driven heat release fluctuations. The decay rates and frequencies of these oscillations are measured every few seconds by acoustically forcing the system via a loudspeaker placed at the bottom of the tube. More than 320,000 temperature measurements are used to compute state and parameters of the base flow model using the Ensemble Kalman Filter. A wave-based network model is then used to describe the acoustics inside the tube. We balance momentum and energy at the boundary between two adjacent elements, and model the viscous and thermal dissipation mechanisms in the boundary layer and at the heater and thermocouple locations. Finally, we tune the parameters of two different thermoacoustic models on an experimental dataset that comprises more than 40,000 experiments. This study shows that, with thorough Bayesian inference, a qualitative model can become quantitatively accurate, without overfitting, as long as it contains the most influencial physical phenomena.


2016 ◽  
Vol 805 ◽  
pp. 523-550 ◽  
Author(s):  
Alessandro Orchini ◽  
Georgios Rigas ◽  
Matthew P. Juniper

In this study we present a theoretical weakly nonlinear framework for the prediction of thermoacoustic oscillations close to Hopf bifurcations. We demonstrate the method for a thermoacoustic network that describes the dynamics of an electrically heated Rijke tube. We solve the weakly nonlinear equations order by order, discuss their contribution on the overall dynamics and show how solvability conditions at odd orders give rise to Stuart–Landau equations. These equations, combined together, describe the nonlinear dynamical evolution of the oscillations’ amplitude and their frequency. Because we retain the contribution of several acoustic modes in the thermoacoustic system, the use of adjoint methods is required to derive the Landau coefficients. The analysis is performed up to fifth order and compared with time domain simulations, showing good agreement. The theoretical framework presented here can be used to reduce the cost of investigating oscillations and subcritical phenomena close to Hopf bifurcations in numerical simulations and experiments and can be readily extended to consider, e.g. the weakly nonlinear interaction of two unstable thermoacoustic modes.


Author(s):  
Francesco Garita ◽  
Hans Yu ◽  
Matthew Juniper

Abstract We combine a thermoacoustic experiment with a thermoacoustic reduced order model using Bayesian inference to accurately learn the parameters of the model, rendering it predictive. The experiment is a vertical Rijke tube containing an electric heater. The heater drives a base flow via natural convection, and thermoacoustic oscillations via velocity-driven heat release fluctuations. The decay rates and frequencies of these oscillations are measured every few seconds by acoustically forcing the system via a loudspeaker placed at the bottom of the tube. More than 320,000 temperature measurements are used to compute state and parameters of the base flow model using the Ensemble Kalman Filter. A wave-based network model is then used to describe the acoustics inside the tube. We balance momentum and energy at the boundary between two adjacent elements, and model the viscous and thermal dissipation mechanisms in the boundary layer and at the heater and thermocouple locations. Finally, we tune the parameters of two different thermoacoustic models on an experimental dataset that comprises more than 40,000 experiments. This study shows that, with thorough Bayesian inference, a qualitative model can become quantitatively accurate, without overfitting, as long as it contains the most influential physical phenomena.


2021 ◽  
Vol 933 ◽  
Author(s):  
Calum S. Skene ◽  
Kunihiko Taira

Phase-reduction analysis captures the linear phase dynamics with respect to a limit cycle subjected to weak external forcing. We apply this technique to study the phase dynamics of the self-sustained oscillations produced by a Rijke tube undergoing thermoacoustic instability. Through the phase-reduction formulation, we are able to reduce these dynamics to a scalar equation for the phase, which allows us to efficiently determine the synchronisation properties of the system. For the thermoacoustic system, we find the conditions for which $m:n$ frequency locking occurs, which sheds light on the mechanisms behind asynchronous and synchronous quenching. We also reveal the optimal placement of pressure actuators that provide the most efficient route to synchronisation.


2020 ◽  
Author(s):  
Francesco Garita ◽  
Hans Yu ◽  
Matthew Juniper

We combine a thermoacoustic experiment with a thermoacoustic reduced order model using Bayesian inference to accurately learn the parameters of the model, rendering it predictive. The experiment is a vertical Rijke tube containing an electric heater. The heater drives a base flow via natural convection, and thermoacoustic oscillations via velocity-driven heat release fluctuations. The decay rates and frequencies of these oscillations are measured every few seconds by acoustically forcing the system via a loudspeaker placed at the bottom of the tube. More than 320,000 temperature measurements are used to compute state and parameters of the base flow model using the Ensemble Kalman Filter. A wave-based network model is then used to describe the acoustics inside the tube. We balance momentum and energy at the boundary between two adjacent elements, and model the viscous and thermal dissipation mechanisms in the boundary layer and at the heater and thermocouple locations. Finally, we tune the parameters of two different thermoacoustic models on an experimental dataset that comprises more than 40,000 experiments. This study shows that, with thorough Bayesian inference, a qualitative model can become quantitatively accurate, without overfitting, as long as it contains the most influencial physical phenomena.


Sign in / Sign up

Export Citation Format

Share Document