scholarly journals Analysis of epidemic spread dynamics using a PDE model and COVID-19 data from Hamilton County OH USA

2021 ◽  
Vol 54 (20) ◽  
pp. 322-327
Author(s):  
Faray Majid ◽  
Aditya M. Deshpande ◽  
Subramanian Ramakrishnan ◽  
Shelley Ehrlich ◽  
Manish Kumar
EDIS ◽  
2017 ◽  
Vol 2017 (4) ◽  
Author(s):  
Keith W. Wynn ◽  
Nicholas S. Dufault ◽  
Rebecca L. Barocco

This ten-page fact sheet includes a summary of various fungicide spray programs for fungal disease control of early leaf spot, late leaf spot, and white mold/stem rot of peanut in 2012-2016 on-farm trials in Hamilton County. Written by K.W. Wynn, N.S. Dufault, and R.L. Barocco and published by the Plant Pathology Department.http://edis.ifas.ufl.edu/pp334


Soil Horizons ◽  
1977 ◽  
Vol 18 (3) ◽  
pp. 5
Author(s):  
Dan Lemaster
Keyword(s):  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruaridh A. Clark ◽  
Malcolm Macdonald

AbstractContact networks provide insights on disease spread due to the duration of close proximity interactions. For systems governed by consensus dynamics, network structure is key to optimising the spread of information. For disease spread over contact networks, the structure would be expected to be similarly influential. However, metrics that are essentially agnostic to the network’s structure, such as weighted degree (strength) centrality and its variants, perform near-optimally in selecting effective spreaders. These degree-based metrics outperform eigenvector centrality, despite disease spread over a network being a random walk process. This paper improves eigenvector-based spreader selection by introducing the non-linear relationship between contact time and the probability of disease transmission into the assessment of network dynamics. This approximation of disease spread dynamics is achieved by altering the Laplacian matrix, which in turn highlights why nodes with a high degree are such influential disease spreaders. From this approach, a trichotomy emerges on the definition of an effective spreader where, for susceptible-infected simulations, eigenvector-based selections can either optimise the initial rate of infection, the average rate of infection, or produce the fastest time to full infection of the network. Simulated and real-world human contact networks are examined, with insights also drawn on the effective adaptation of ant colony contact networks to reduce pathogen spread and protect the queen ant.


Sign in / Sign up

Export Citation Format

Share Document