scholarly journals Comparison of three-dimensional echocardiography and speckle tracking echocardiography in quantification and mapping of intraventricular mechanical dyssynchrony

2019 ◽  
Vol 71 (3) ◽  
pp. 256-262
Author(s):  
Anupam Bhambhani ◽  
Amalu Mathew
2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
L Capotosto ◽  
N Galea ◽  
M Francone ◽  
L Marchitelli ◽  
G Tanzilli ◽  
...  

Abstract Purpose The purpose of this study was to examine right ventricular (RV) function by three-dimensional speckle-tracking echocardiography (3DSTE) in patients after correction of tetralogy of Fallot (TF), the accuracy of 3DSTE compared to cardiovascular magnetic resonance (CMR) findings and assess pulmonary arterial (PA) distensibility in order to achieve a more comprehensive understanding of the matching between RV performance and PA load. Methods Twenty-one patients (mean age 39 ± 16 years) with repaired TF and twenty-one age-matched healthy subjects selected as controls were studied. CMR findings were available in 14 patients. RV volumes, RV ejection fraction (RVEF) and RV longitudinal and circumferential strains were calculated by three-dimensional echocardiography and three-dimensional speckle tracking echocardiography. The main pulmonary artery was interrogated by color, pulsed, and continuous-wave Doppler. Pulmonary regurgitation (PR) was assessed by color-flow mapping and graded as none, mild, or greater than mild using the measurement of the regurgitant jet width in relation to the outflow tract diameter. Right pulmonary artery (PA) was visualized from suprasternal view by two-dimensional echocardiography. Tissue Doppler Imaging (TDI) mode was activated in B-mode imaging to examine arterial motion, then mode was changed to color-mode with the beam line aligned perpendicular to the superior and inferior walls of the right PA. PA distensibility and strain were determined. Data analysis was performed offline. Results Overall, 3D RVEF and RV longitudinal strain were reduced in TF patients compared to the control group. Nine patients had moderate or moderate-to-severe PR. PA strain and distensibility were decreased (p = 0.003) compared with controls, both in the presence and absence of PR. PA strain had a positive correlation with RVEF (r = 0.79, p < 0.005) and RV strain (r = 0.82, p < 0.001). RV end-diastolic and end-systolic volumes by 3DE correlated with the respective parameters by CMR (r = 0.88,p < 0.001 and r = 0.87,p < 0.005 respectively). Patients with moderate-to-severe PR had more prominent PA strain changes (p = 0.02). Conclusions Three-dimensional right ventricular ejection fraction and RV strain are impaired in patients with repaired TF, in agreement with CMR data. Reduced PA strain is associated with reduced RV 3DSTE parameters and is more pronounced in the presence of pulmonary regurgitation.


2011 ◽  
pp. 48-53
Author(s):  
Anh Vu Nguyen

The author summarizes the recent developments in speckle-tracking echocardiography (STE), a relatively new technique that can be used in conjunction with two-dimensional or three-dimensional echocardiography for resolving the multidirectional components of left ventricular (LV) deformation. STE quantify accurately the regional and global function of the left ventricle. STE holds promise to reduce interobserver and intraobserver variability in assessing regional LV function. Following a brief overview of the approach, the authors pool the initial observations from clinical studies on the development, validation, merits, and limitations of STE.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Moustafa Dawood ◽  
Eman Elsharkawy ◽  
Mohamed Ayman Abdel-Hay ◽  
Moustafa Nawar

Abstract Background Long-term RV pacing leads to ventricular dyssynchrony, in the form of LBBB-like morphology, with subsequent detrimental effects on LV structure and function. Three-dimensional echocardiography allowed early detection of volumetric changes associated with PICMP and provided more accurate assessment of mechanical dyssynchrony. Speckle tracking strain is able to identify LV dysfunction even before any reduction in LVEF. Our aim was to study pacing effects on LV function and hemodynamics using 3D echo and speckle tracking strain. Results This was a prospective study of 175 consecutive patients without structural heart disease (LVEF > 50%) presented for permanent pacing. Full-volume 3D echocardiography done before implantation, 1 week, and 6 months together with GLS. Patients were followed for 6 months to detect incidence of PIVD (defined as reduction in LVEF > 10% but still above 50%) and PICMP (defined as decrease in LVEF by 10% from baseline in absence of other known causes of cardiomyopathy resulting in EF< 50%). PIVD and PICMP predictors and risk factors were analyzed. Only 50 patients met study criteria. Twenty-five (50%) patients developed LV systolic dysfunction; of these, 19 (38%) developed PIVD and 6 (12%) developed PICMP. Pre-implantation GLS was significantly lower in the 6 patients who subsequently developed PICMP, compared to those who developed PIVD and the preserved EF group (mean GLS − 15.50 vs. − 21.0, − 20.0 respectively; p = 0.005, 0.033, respectively). At 1 week, GLS was significantly lower in the 25 patients who subsequently developed PIVD, compared to those who did not (GLS − 13.0 vs. − 18.0, respectively; p = 0.002). A reduction of baseline GLS by 15% or more at 1 week was associated with the development of PIVD and PICMP (p = < 0.001). A wider native QRS complex was associated with PIVD and PICMP (p = 0.008, 0.018, respectively). The other predictors were found non-significant. Conclusion PICMP may be more common than previously reported and it may occur shortly after implantation. Pre-implantation GLS is a sensitive parameter for PICMP. One-week GLS, pre-implantation QRS complex width are early predictors for PICMP and PIVD before any reduction in EF.


Sign in / Sign up

Export Citation Format

Share Document