Interferon regulatory factor-1 (IRF-1) interacts with regulated in development and DNA damage response 2 (REDD2) in the cytoplasm of mouse bone marrow cells

Author(s):  
Manish Gupta ◽  
Pramod C. Rath
2006 ◽  
Vol 80 (5) ◽  
pp. 2257-2266 ◽  
Author(s):  
Young C. Shin ◽  
Hiroyuki Nakamura ◽  
Xiaozhen Liang ◽  
Pinghui Feng ◽  
Heesoon Chang ◽  
...  

ABSTRACT Infected cells recognize viral replication as a DNA damage stress and elicit the ataxia telangiectasia-mutated (ATM)/p53-mediated DNA damage response signal transduction pathway as part of the host surveillance mechanisms, which ultimately induces the irreversible cell cycle arrest and apoptosis. Viruses have evolved a variety of mechanisms to counteract this host intracellular innate immunity. Kaposi's sarcoma-associated herpesvirus (KSHV) viral interferon regulatory factor 1 (vIRF1) interacts with the cellular p53 tumor suppressor through its central DNA binding domain, and this interaction inhibits transcriptional activation of p53. Here, we further demonstrate that KSHV vIRF1 downregulates the total p53 protein level by facilitating its proteasome-mediated degradation. Detailed biochemical study showed that vIRF1 interacted with cellular ATM kinase through its carboxyl-terminal transactivation domain and that this interaction blocked the activation of ATM kinase activity induced by DNA damage stress. As a consequence, vIRF1 expression greatly reduced the level of serine 15 phosphorylation of p53, resulting in an increase of p53 ubiquitination and thereby a decrease of its protein stability. These results indicate that KSHV vIRF1 comprehensively compromises an ATM/p53-mediated DNA damage response checkpoint by targeting both upstream ATM kinase and downstream p53 tumor suppressor, which might circumvent host growth surveillance and facilitate viral replication in infected cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1272-1272
Author(s):  
Jeff L. Yates ◽  
Hartmut Geiger ◽  
Gary Van Zant

Abstract DNA repair efficiency has been postulated to play a role in aging-associated phenotypes as well as in the generation of a variety of cancers. This is especially pertinent in highly proliferative tissues such as the lymphohematopoietic system, since the stem and progenitor compartments are responsible for maintaining proliferative demands within a restricted range for the lifetime of an individual. Hydroxyurea (HU) is a chemotherapeutic drug that targets DNA synthesis by inhibiting the synthesis of the nucleotide substrate resulting in stalled replication forks and single- and double-stranded breaks (DSBs) in the DNA. Recently, our lab has mapped a locus on mouse chromosome 7 that is involved in both organismal lifespan determination and HU sensitivity of bone marrow stem and progenitor cells in the HU-sensitive (25.9% killing), short-lived (540 days) DBA/2J (D2) and HU-insensitive (11.8% killing), long-lived (816 days) C57Bl/6J (B6) strains of mouse. To confirm that this locus is responsible for hydroxyurea sensitivity we generated congenic mice where the locus-containing interval was moved from B6 to D2 (D2. B6 chr. 7) and vice versa (B6. D2 chr. 7). When these animals were treated with HU it was found that the D2 locus imparts a high killing phenotype (38.0%) and the B6 locus confers a low killing phenotype (−4.2%). Using a flow cytometry-based in vivo Bromodeoxyuridine (BrdU) incorporation assay, we measured the recovery of DNA synthesis in the bone marrow in D2 and B6 mice after IP injection of HU (2mg/g). We first determined that DNA synthesis was completely inhibited within 15 minutes of injection and persisted for at least 3 hours in both mouse strains. At 4 hours, bone marrow cells of both strains began to incorporate BrdU, with B6 recovery more rapid than D2, 2.9+/−.5 vs. 7.9+/−3.9 percent BrdU positive cells (p=.01), respectively. Because HU has been used in the past to synchronize cells in G0/G1 and to measure cells in S phase, it was expected that BrdU incorporation would re-initiate within the G0/G1 compartment of cells. Indeed, bone marrow cells from D2 mice incorporated BrdU exclusively within the G0/G1 population. Surprisingly it was found that cells from B6 mice that had an S phase content of DNA prior to HU survived the insult and began to synthesize DNA. It was concluded that B6 bone marrow might have a more robust DNA damage response than that of D2. To study the DNA damage response in the bone marrow we treated mice with HU followed by BrdU and stained the bone marrow cells with an anti-BrdU antibody and an antibody to gamma-H2AX (gH2AX), a histone variant that becomes phosphorylated in the vicinity of DNA DSBs. In both D2 and B6 bone marrow cells it was shown that maximal gH2AX phosphorylation occurred within 1 hour and only occurred in the BrdU+ fraction of the bone marrow cells. Thus it can be concluded that HU causes DNA damage and these two strains of mouse differ in their response due in part to a locus on chromosome 7. Current studies are aimed at identifying the gene(s) of interest in the congenic interval, which include Tfpt and Prkcc.


2013 ◽  
Vol 27 (7) ◽  
pp. 370-377 ◽  
Author(s):  
Sabry M. Attia ◽  
Gamaleldin I. Harisa ◽  
Adel R. Abd-Allah ◽  
Sheikh Fayaz Ahmad ◽  
Saleh A. Bakheet

2015 ◽  
Vol 39 ◽  
pp. S123-S124
Author(s):  
J.C. Sousa ◽  
M.B. Costa ◽  
L.H.G. Silva ◽  
C.M.S. Martinelli ◽  
S.M.M. Magalhaes ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1571-1571
Author(s):  
Wen-hsin Lee

Abstract Abstract 1571 Myelodysplastic syndromes (MDS) are bone marrow disorders characterized by ineffective haematopoiesis and peripheral cytopenia(s) with frequent evolution to acute myeloid leukemia (AML). Apoptosis is significantly deregulated in early MDS whereas advanced MDS is characterized by deregulation of DNA damage response. As MDS proceeds to AML, the ratio of apoptosis to proliferation decreases, resulting in clonal outgrowth of abnormal cells. The t(3;5)(q25;q34) translocation, creating the NPM-MLF1 fusion, has been found as a sole cytogenetic abnormality in MDS. It is recurrent, with poor prognosis but the precise mechanism through which NPM-MLF1 induces malignant transformation remains unknown. We aimed to model this disease in vitro and in vivo by expressing NPM-MFL1 in mouse bone marrow hematopoietic progenitor cells (HPCs) and analyzing any changes in HPC self-renewal and response to DNA damage. NPM-MLF1 did not impair haematopoiesis in vitro and in vivo. FLT3/ITD was frequently associated with NPM mutant in AML patients; however, NPM-MLF1 did not collaborate with FLT3/ITD in our system. To recapitulate NPM hemizygosity in t(3;5)-MDS patients, we have expressed NPM-MLF1 in HPCs derived from Npm+/− mice. A transient increase in the self-renewal of the NPM-MLF1-expressing Npm+/− HPCs was seen. These cells did not exhibit enhanced proliferation as confirmed by growth curve and analysis of DNA synthesis. Interestingly, unlike control cells, NPM-MLF1-expressing Npm+/− HPCs showed prolonged self-renewal ability in vitro, and an elevated expression of c-Myc, Hoxa9, Hoxa10 and Meis1 genes. In addition to altering HPC self-renewal, NPM-MLF1 was also found to modulate their DNA damage response. This study suggests that the ability of NPM-MLF1 to maintain HPC self-renewal and impaired DNA damage responses may favour the accumulation and outgrowth of the aberrant HPCs, contributing to the abnormal haematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3351-3351 ◽  
Author(s):  
Leona Raskova Kafkova ◽  
Zuzana Somikova ◽  
Jana Kucerova ◽  
Lenka Calabkova ◽  
Pavla Luzna ◽  
...  

Abstract Iron chelation therapy is commonly used in patients with myelodysplastic syndrome (MDS), to prevent majorcomplications of iron overload. Besides effects on maintaining control of iron stores and preventing iron-induced cardiac disease, the impact of chelation therapy on overall survival and leukemia-free survival in MDS has been documented, but not well understood. Since MDS bone marrow cells are known to activate DNA damage response (DDR) signaling and iron chelators target cancer cells through multiple stress-response mechanisms (endoplasmic reticulum (ER) stress, autophagy), we hypothesized that iron chelation could reinforce DDR signaling and could thus support tumor-suppressing role of DDR. Also nucleotide deficiency was shown to contribute to DDR, and iron chelation is known to inhibit ribonucleotide reductase (RR), an iron-dependent enzyme, which supplies cells with deoxyribonucleotides (dNTPs). Here, we tested the effects of lysosomotropic iron chelator deferoxamine mesylate (DFO) in a preleukemia mouse model, wherein epigenetic oncogene-induced leukemogenesis is preceded with a long-lasting preleukemia stage (Takacova S, et al. Cancer Cell. 2012;21(4):517-31.). Preleukemic, aberrantly proliferating myeloid cells in this model activate a replication checkpoint and ATR-Chk1-mediated DDR (consistent with oncogene-induced replication stress) and attain hallmarks of senescence (with a long latency), resulting in the inhibition of leukemia progression. A group of 10 preleukemia mice and a group of 10 control mice aged 7 month were treated twice daily with DFO doses adjusted to 88,8 mg/kg (i.p. injection) in order to mimic serum concentrations of the drug achieved in patients. After 6 weeks of chelator administration, the treatment lead to the activation of Chk1(S345) in the bone marrow (BM) of control mice, but did not result in accumulation of γH2AX, a marker of DNA damage, in BM of these mice. In contrast, in preleukemia mice, with already activated threshold of ATR-Chk1 signaling (marker of ongoing oncogene-induced replication stress), Chk1(S345) remained unchanged after DFO treatment. However, we observed significant accumulation of γH2AX foci in oncogene-positive BM cells. These data suggested that iron removal may induce Chk1 activation in vivo, and, in addition, may reinforce activation of DDR in preleukemia cells perhaps due to synthetic effect of iron chelation with oncogene activation resulting in increased levels in DDR signaling (assessment of oxidative DNA damage (8-oxoguanine staining) is ongoing). Next, we analyzed whether iron chelation in both groups of mice influences DNA replication, in which the limiting step is the availability of dNTPs. The RR activity was significantly decreased in the BM of both groups of DFO-treated mice, however, with no impact on the concentration of BM dNTPs; in fact, dNTPs have accumulated in BM of these mice. We revealed that this was a consequence of the activation of S-phase checkpoint in control mice, and of a decrease of actively replicating myeloid cells and activation of G2/M checkpoint in preleukemia mice. Cellular iron depletion was shown to activate p38MAPK pathway (Yu Y, Richardson DR. J Biol Chem. 2011;286(17):15413-27.). p38MAPK pathway, and its component MK2, establishes intra-S-phase cell cycle checkpoint and activates G2/M checkpoint (as a part of DDR, in parallel to Chk1 activation (Reinhardt HC, et al. Curr Opin Cell Biol. 2009;21:245-55.)). Indeed, our preliminary result revealed phosphorylated MK2 specifically in preleukemia mouse BM treated with DFO. Since we did not detect increased apoptosis in BM of DFO treated mice, and because p38MAPK pathway is involved in the activation of ER stress and autophagy, we tested whether markers of ER stress and autophagy are detectable in the mice upon DFO treatment. MyD116 (marker of recovery from ER stress) and LC3-II (marker of autophagy), were specifically induced in preleukemia cells upon DFO treatment. Collectively, these data demonstrate that preleukemia cells exposed to DFO activate distinct but functionally overlapping signaling pathways, resulting in reinforced DDR. Whether this mechanism could increase a barrier against leukemia transformation of chelated MDS patients remains to be investigated. Authorship: LRK and ZS: equal credit as first authors. Acknowledgment: Supported by the Czech Science Foundation (P301/12/1503) and by IGA_LF_2015_015. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Kanive Parashiva Guruprasad ◽  
Advait Subramanian ◽  
Vikram Jeet Singh ◽  
Raghavendra Sudheer Kumar Sharma ◽  
Puthiya Mundyat Gopinath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document