scholarly journals Inhibition of the ATM/p53 Signal Transduction Pathway by Kaposi's Sarcoma-Associated Herpesvirus Interferon Regulatory Factor 1

2006 ◽  
Vol 80 (5) ◽  
pp. 2257-2266 ◽  
Author(s):  
Young C. Shin ◽  
Hiroyuki Nakamura ◽  
Xiaozhen Liang ◽  
Pinghui Feng ◽  
Heesoon Chang ◽  
...  

ABSTRACT Infected cells recognize viral replication as a DNA damage stress and elicit the ataxia telangiectasia-mutated (ATM)/p53-mediated DNA damage response signal transduction pathway as part of the host surveillance mechanisms, which ultimately induces the irreversible cell cycle arrest and apoptosis. Viruses have evolved a variety of mechanisms to counteract this host intracellular innate immunity. Kaposi's sarcoma-associated herpesvirus (KSHV) viral interferon regulatory factor 1 (vIRF1) interacts with the cellular p53 tumor suppressor through its central DNA binding domain, and this interaction inhibits transcriptional activation of p53. Here, we further demonstrate that KSHV vIRF1 downregulates the total p53 protein level by facilitating its proteasome-mediated degradation. Detailed biochemical study showed that vIRF1 interacted with cellular ATM kinase through its carboxyl-terminal transactivation domain and that this interaction blocked the activation of ATM kinase activity induced by DNA damage stress. As a consequence, vIRF1 expression greatly reduced the level of serine 15 phosphorylation of p53, resulting in an increase of p53 ubiquitination and thereby a decrease of its protein stability. These results indicate that KSHV vIRF1 comprehensively compromises an ATM/p53-mediated DNA damage response checkpoint by targeting both upstream ATM kinase and downstream p53 tumor suppressor, which might circumvent host growth surveillance and facilitate viral replication in infected cells.

2014 ◽  
Vol 89 (5) ◽  
pp. 2628-2642 ◽  
Author(s):  
Ling Fang ◽  
Sanjeev Choudhary ◽  
Bing Tian ◽  
Istvan Boldogh ◽  
Chunying Yang ◽  
...  

ABSTRACTRespiratory syncytial virus (RSV) is a primary etiological agent of childhood lower respiratory tract disease. Molecular patterns induced by active infection trigger a coordinated retinoic acid-inducible gene I (RIG-I)-Toll-like receptor (TLR) signaling response to induce inflammatory cytokines and antiviral mucosal interferons. Recently, we discovered a nuclear oxidative stress-sensitive pathway mediated by the DNA damage response protein, ataxia telangiectasia mutated (ATM), in cytokine-induced NF-κB/RelA Ser 276 phosphorylation. Here we observe that ATM silencing results in enhanced single-strand RNA (ssRNA) replication of RSVand Sendai virus, due to decreased expression and secretion of type I and III interferons (IFNs), despite maintenance of IFN regulatory factor 3 (IRF3)-dependent IFN-stimulated genes (ISGs). In addition to enhanced oxidative stress, RSV replication enhances foci of phosphorylated histone 2AX variant (γH2AX), Ser 1981 phosphorylation of ATM, and IKKγ/NEMO-dependent ATM nuclear export, indicating activation of the DNA damage response. ATM-deficient cells show defective RSV-induced mitogen and stress-activated kinase 1 (MSK-1) Ser 376 phosphorylation and reduced RelA Ser 276 phosphorylation, whose formation is required for IRF7 expression. We observe that RelA inducibly binds the native IFN regulatory factor 7 (IRF7) promoter in an ATM-dependent manner, and IRF7 inducibly binds to the endogenous retinoic acid-inducible gene I (RIG-I) promoter. Ectopic IRF7 expression restores RIG-I expression and type I/III IFN expression in ATM-silenced cells. We conclude that paramyxoviruses trigger the DNA damage response, a pathway required for MSK1 activation of phospho Ser 276 RelA formation to trigger the IRF7-RIG-I amplification loop necessary for mucosal IFN production. These data provide the molecular pathogenesis for defects in the cellular innate immunity of patients with homozygous ATM mutations.IMPORTANCERNA virus infections trigger cellular response pathways to limit spread to adjacent tissues. This “innate immune response” is mediated by germ line-encoded pattern recognition receptors that trigger activation of two, largely independent, intracellular NF-κB and IRF3 transcription factors. Downstream, expression of protective antiviral interferons is amplified by positive-feedback loops mediated by inducible interferon regulatory factors (IRFs) and retinoic acid inducible gene (RIG-I). Our results indicate that a nuclear oxidative stress- and DNA damage-sensing factor, ATM, is required to mediate a cross talk pathway between NF-κB and IRF7 through mediating phosphorylation of NF-κB. Our studies provide further information about the defects in cellular and innate immunity in patients with inherited ATM mutations.


2011 ◽  
Vol 89 (1) ◽  
pp. 45-60 ◽  
Author(s):  
Kendra L. Cann ◽  
Graham Dellaire

Higher order chromatin structure has an impact on all nuclear functions, including the DNA damage response. Over the past several years, it has become increasingly clear that heterochromatin and euchromatin represent separate entities with respect to both damage sensitivity and repair. The chromatin compaction present in heterochromatin helps to protect this DNA from damage; however, when lesions do occur, the compaction restricts the ability of DNA damage response proteins to access the site, as evidenced by its ability to block the expansion of H2AX phosphorylation. As such, DNA damage in heterochromatin is refractory to repair, which requires the surrounding chromatin structure to be decondensed. In the case of DNA double-strand breaks, this relaxation is at least partially mediated by the ATM kinase phosphorylating and inhibiting the function of the transcriptional repressor KAP1. This review will focus on the functions of KAP1 and other proteins involved in the maintenance or restriction of heterochromatin, including HP1 and TIP60, in the DNA damage response. As heterochromatin is important for maintaining genomic stability, cells must maintain a delicate balance between allowing repair factors access to these regions and ensuring that these regions retain their organization to prevent increased DNA damage and chromosomal mutations.


2006 ◽  
Vol 80 (12) ◽  
pp. 5862-5874 ◽  
Author(s):  
Xiaozhen Liang ◽  
Mary T. Pickering ◽  
Nam-Hyuk Cho ◽  
Heesoon Chang ◽  
Michael R. Volkert ◽  
...  

ABSTRACT Infected cells recognize viral replication as a DNA damage stress and elicit a DNA damage response that ultimately induces apoptosis as part of host immune surveillance. Here, we demonstrate a novel mechanism where the murine gamma herpesvirus 68 (γHV68) latency-associated, anti-interferon M2 protein inhibits DNA damage-induced apoptosis by interacting with the DDB1/COP9/cullin repair complex and the ATM DNA damage signal transducer. M2 expression constitutively induced DDB1 nuclear localization and ATM kinase activation in the absence of DNA damage. Activated ATM subsequently induced Chk activation and p53 phosphorylation and stabilization without eliciting H2AX phosphorylation and MRN recruitment to foci upon DNA damage. Consequently, M2 expression inhibited DNA repair, rendered cells resistant to DNA damage-induced apoptosis, and induced a G1 cell cycle arrest. Our results suggest that γHV68 M2 blocks apoptosis-mediated intracellular innate immunity, which might ultimately contribute to its role in latent infection.


2021 ◽  
Author(s):  
Joshua Victor ◽  
Jamie Deutsch ◽  
Annalis Whitaker ◽  
Erica N. Lamkin ◽  
Anthony March ◽  
...  

AbstractThe novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for the current COVID-19 pandemic and has now infected more than 200 million people with more than 4 million deaths globally. Recent data suggest that symptoms and general malaise may continue long after the infection has ended in recovered patients, suggesting that SARS-CoV-2 infection has profound consequences in the host cells. Here we report that SARS-CoV-2 infection can trigger a DNA damage response (DDR) in African green monkey kidney cells (Vero E6). We observed a transcriptional upregulation of the Ataxia telangiectasia and Rad3 related protein (ATR) in infected cells. In addition, we observed enhanced phosphorylation of CHK1, a downstream effector of the ATR DNA damage response, as well as H2AX. Strikingly, SARS-CoV-2 infection lowered the expression of TRF2 shelterin-protein complex, and reduced telomere lengths in infected Vero E6 cells. Thus, our observations suggest SARS-CoV-2 may have pathological consequences to host cells beyond evoking an immunopathogenic immune response.


Sign in / Sign up

Export Citation Format

Share Document