Cardioprotective effects of salidroside on myocardial ischemia–reperfusion injury in coronary artery occlusion-induced rats and Langendorff-perfused rat hearts

2016 ◽  
Vol 215 ◽  
pp. 532-544 ◽  
Author(s):  
Xiayun Chang ◽  
Kai Zhang ◽  
Rui Zhou ◽  
Fen Luo ◽  
Lingpeng Zhu ◽  
...  
1997 ◽  
Vol 273 (5) ◽  
pp. H2232-H2239 ◽  
Author(s):  
Thane G. Maddaford ◽  
Grant N. Pierce

Amiloride analogs block Na+/H+exchange and thereby protect the heart from myocardial ischemia-reperfusion injury. It is unclear whether drugs must be present before ischemia to be cardioprotective. After 60 min of global ischemia in the coronary-perfused right ventricular wall (RVW), as little as 1 min of exposure to dimethyl amiloride (DMA) immediately at the time of reperfusion protected the RVW. Delaying the drug attenuated the cardioprotection. If DMA was introduced in an ischemic solution near the end of ischemia, the cardioprotective effects were augmented. If the drug was washed out of the RVW vascular space before ischemia, cardioprotection was not observed. In contrast, in whole hearts, preischemic perfusion of the drug was necessary for cardioprotection and the cardioprotection remained even if the drug was washed out before ischemia. We conclude that Na+/H+exchange is active and contributes to contractile dysfunction during the first seconds of reperfusion. This is difficult to detect in the perfused whole heart, and the washout data suggest that this may be due to a limitation in drug delivery across the vascular wall. The data also suggest that the exchanger is not as active during ischemia itself as it is during reperfusion.


2000 ◽  
Vol 279 (1) ◽  
pp. H329-H338 ◽  
Author(s):  
Feng Gao ◽  
Theodore A. Christopher ◽  
Bernard L. Lopez ◽  
Eitan Friedman ◽  
Guoping Cai ◽  
...  

The purpose of this study was to determine whether the protective effects of adenosine on myocardial ischemia-reperfusion injury are altered with age, and if so, to clarify the mechanisms that underlie this change related to nitric oxide (NO) derived from the vascular endothelium. Isolated perfused rat hearts were exposed to 30 min of ischemia and 60 min of reperfusion. In the adult hearts, administration of adenosine (5 μmol/l) stimulated NO release (1.06 ± 0.19 nmol · min−1 · g−1, P < 0.01 vs. vehicle), increased coronary flow, improved cardiac functional recovery (left ventricular developed pressure 79 ± 3.8 vs. 57 ± 3.1 mmHg in vehicle, P < 0.001; maximal rate of left ventricular pressure development 2,385 ± 103 vs. 1,780 ± 96 in vehicle, P < 0.001), and reduced myocardial creatine kinase loss (95 ± 3.9 vs. 159 ± 4.6 U/100 mg protein, P < 0.01). In aged hearts, adenosine-stimulated NO release was markedly reduced (+0.42 ± 0.12 nmol · min−1 · g−1 vs. vehicle), and the cardioprotective effects of adenosine were also attenuated. Inhibition of NO production in the adult hearts significantly decreased the cardioprotective effects of adenosine, whereas supplementation of NO in the aged hearts significantly enhanced the cardioprotective effects of adenosine. The results show that the protective effects of adenosine on myocardial ischemia-reperfusion injury are markedly diminished in aged animals, and that the loss in NO release in response to adenosine may be at least partially responsible for this age-related alteration.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Kun Liu ◽  
Fei Wang ◽  
Shuo Wang ◽  
Wei-Nan Li ◽  
Qing Ye

The aim of this study was to investigate the cardioprotective effect of mangiferin (MAF) in vitro and in vivo. Oxidative stress and inflammatory injury were detected in coronary artery ligation in rats and also in hypoxia-reoxygenation- (H/R-) induced H9c2 cells. MAF inhibited myocardial oxidative stress and proinflammatory cytokines in rats with coronary artery occlusion. The ST segment of MAF treatment groups also resumed. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that MAF could significantly reduce myocardial injury. In vitro data showed that MAF could improve hypoxia/reoxygenation- (H/R-) induced H9c2 cell activity. In addition, MAF could significantly reduce oxidative stress and inflammatory pathway protein expression in H/R-induced H9c2 cells. This study has clarified the protective effects of MAF on myocardial injury and also confirmed that oxidative stress and inflammation were involved in the myocardial ischemia-reperfusion injury (I/R) model.


2020 ◽  
Vol 115 (5) ◽  
Author(s):  
Manuel Lobo-Gonzalez ◽  
Carlos Galán-Arriola ◽  
Xavier Rossello ◽  
Maribel González‐Del‐Hoyo ◽  
Jean Paul Vilchez ◽  
...  

Abstract Early metoprolol administration protects against myocardial ischemia–reperfusion injury, but its effect on infarct size progression (ischemic injury) is unknown. Eight groups of pigs (total n = 122) underwent coronary artery occlusion of varying duration (20, 25, 30, 35, 40, 45, 50, or 60 min) followed by reperfusion. In each group, pigs were randomized to i.v. metoprolol (0.75 mg/kg) or vehicle (saline) 20 min after ischemia onset. The primary outcome measure was infarct size (IS) on day7 cardiac magnetic resonance (CMR) normalized to area at risk (AAR, measured by perfusion computed tomography [CT] during ischemia). Metoprolol treatment reduced overall mortality (10% vs 26%, p = 0.03) and the incidence and number of primary ventricular fibrillations during infarct induction. In controls, IS after 20-min ischemia was ≈ 5% of the area AAR. Thereafter, IS progressed exponentially, occupying almost all the AAR after 35 min of ischemia. Metoprolol injection significantly reduced the slope of IS progression (p = 0.004 for final IS). Head-to-head comparison (metoprolol treated vs vehicle treated) showed statistically significant reductions in IS at 30, 35, 40, and 50-min reperfusion. At 60-min reperfusion, IS was 100% of AAR in both groups. Despite more prolonged ischemia, metoprolol-treated pigs reperfused at 50 min had smaller infarcts than control pigs undergoing ischemia for 40 or 45 min and similar-sized infarcts to those undergoing 35-min ischemia. Day-45 LVEF was higher in metoprolol-treated vs vehicle-treated pigs (41.6% vs 36.5%, p = 0.008). In summary, metoprolol administration early during ischemia attenuates IS progression and reduces the incidence of primary ventricular fibrillation. These data identify metoprolol as an intervention ideally suited to the treatment of STEMI patients identified early in the course of infarction and requiring long transport times before primary angioplasty.


Sign in / Sign up

Export Citation Format

Share Document