The effects of early‐life stress on dopamine system function in adolescent female rats

2017 ◽  
Vol 57 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Iwona Majcher‐Maślanka ◽  
Anna Solarz ◽  
Krzysztof Wędzony ◽  
Agnieszka Chocyk
2011 ◽  
Vol 221 (1) ◽  
pp. 43-49 ◽  
Author(s):  
V. Van Waes ◽  
M. Darnaudéry ◽  
J. Marrocco ◽  
S.H. Gruber ◽  
E. Talavera ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1899 ◽  
Author(s):  
Hae Jeong Park ◽  
Sang A. Kim ◽  
Won Sub Kang ◽  
Jong Woo Kim

Recent studies have reported that changes in gut microbiota composition could induce neuropsychiatric problems. In this study, we investigated alterations in gut microbiota induced by early-life stress (ELS) in rats subjected to maternal separation (MS; 6 h a day, postnatal days (PNDs) 1–21), along with changes in inflammatory cytokines and tryptophan-kynurenine (TRP-KYN) metabolism, and assessed the differences between sexes. High-throughput sequencing of the bacterial 16S rRNA gene showed that the relative abundance of the Bacteroides genus was increased and that of the Lachnospiraceae family was decreased in the feces of MS rats of both sexes (PND 56). By comparison, MS increased the relative abundance of the Streptococcus genus and decreased that of the Staphylococcus genus only in males, whereas the abundance of the Sporobacter genus was enhanced and that of the Mucispirillum genus was reduced by MS only in females. In addition, the levels of proinflammatory cytokines were increased in the colons (IFN-γ and IL-6) and sera (IL-1β) of the male MS rats, together with the elevation of the KYN/TRP ratio in the sera, but not in females. In the hippocampus, MS elevated the level of IL-1β and the KYN/TRP ratio in both male and female rats. These results indicate that MS induces peripheral and central inflammation and TRP-KYN metabolism in a sex-dependent manner, together with sex-specific changes in gut microbes.


2020 ◽  
Vol 10 (7) ◽  
pp. 447 ◽  
Author(s):  
Héctor González-Pardo ◽  
Jorge L. Arias ◽  
Eneritz Gómez-Lázaro ◽  
Isabel López Taboada ◽  
Nélida M. Conejo

Sex differences have been reported in the susceptibility to early life stress and its neurobiological correlates in humans and experimental animals. However, most of the current research with animal models of early stress has been performed mainly in males. In the present study, prolonged maternal separation (MS) paradigm was applied as an animal model to resemble the effects of adverse early experiences in male and female rats. Regional brain mitochondrial function, monoaminergic activity, and neuroinflammation were evaluated as adults. Mitochondrial energy metabolism was greatly decreased in MS females as compared with MS males in the prefrontal cortex, dorsal hippocampus, and the nucleus accumbens shell. In addition, MS males had lower serotonin levels and increased serotonin turnover in the prefrontal cortex and the hippocampus. However, MS females showed increased dopamine turnover in the prefrontal cortex and increased norepinephrine turnover in the striatum, but decreased dopamine turnover in the hippocampus. Sex differences were also found for pro-inflammatory cytokine levels, with increased levels of TNF-α and IL-6 in the prefrontal cortex and hippocampus of MS males, and increased IL-6 levels in the striatum of MS females. These results evidence the complex sex- and brain region-specific long-term consequences of early life stress.


2017 ◽  
Vol 312 (2) ◽  
pp. E98-E108 ◽  
Author(s):  
Margaret O. Murphy ◽  
Joseph B. Herald ◽  
Caleb T. Wills ◽  
Stanley G. Unfried ◽  
Dianne M. Cohn ◽  
...  

Experimental studies in rodents have shown that females are more susceptible to exhibiting fat expansion and metabolic disease compared with males in several models of fetal programming. This study tested the hypothesis that female rat pups exposed to maternal separation (MatSep), a model of early-life stress, display an exacerbated response to diet-induced obesity compared with male rats. Also, we tested whether the postnatal treatment with metyrapone (MTP), a corticosterone synthase inhibitor, would attenuate this phenotype. MatSep was performed in WKY offspring by separation from the dam (3 h/day, postnatal days 2–14). Upon weaning, male and female rats were placed on a normal (ND; 18% kcal fat) or high-fat diet (HFD; 60% kcal fat). Nondisturbed littermates served as controls. In male rats, no diet-induced differences in body weight (BW), glucose tolerance, and fat tissue weight and morphology were found between MatSep and control male rats. However, female MatSep rats displayed increased BW gain, fat pad weights, and glucose intolerance compared with control rats ( P < 0.05). Also, HFD increased plasma corticosterone (196 ± 51 vs. 79 ± 18 pg/ml, P < 0.05) and leptin levels (1.8 ± 0.4 vs. 1.3 ± 0.1 ng/ml, P < 0.05) in female MatSep compared with control rats, whereas insulin and adiponectin levels were similar between groups. Female control and MatSep offspring were treated with MTP (50 µg/g ip) 30 min before the daily separation. MTP treatment significantly attenuated diet-induced obesity risk factors, including elevated adiposity, hyperleptinemia, and glucose intolerance. These findings show that exposure to stress hormones during early life could be a key event to enhance diet-induced obesity and metabolic disease in female rats. Thus, pharmacological and/or behavioral inflection of the stress levels is a potential therapeutic approach for prevention of early life stress-enhanced obesity and metabolic disease.


2006 ◽  
Vol 20 (5) ◽  
Author(s):  
David M Pollock ◽  
Gerard D'Angelo ◽  
Jeffrey A Bobo ◽  
Jennifer S Pollock

2019 ◽  
Vol 3 (s1) ◽  
pp. 9-10
Author(s):  
Alexandra Moussa-Tooks ◽  
Ken Mackie ◽  
John Green ◽  
Lisa Bartolomeo ◽  
Alex Gimeno ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Early life stress is known to greatly impact neurodevelopment during critical periods, conferring risk for various psychopathologies, including the onset and exacerbation of schizophrenia and anxiety disorders. The endocannabinoid system is highly integrated into the stress response and may be one means by which early life stress produces such deleterious effects. Using a naturalistic, ecologically valid animal model, this study explored interactions between the stress response and endocannabinoid systems within the cerebellum, a region dense with the CB1 endocannabinoid receptors and shown to be susceptible to stress. METHODS/STUDY POPULATION: This study explored behavioral and neural impacts of early life stress in Long-Evans rats reared with or without limited access to bedding material during postnatal day (PND) 2-9. Corticosterone (CORT) levels were measured at PND8 and 70. During PND50-70, rats were assessed on Novel Object Recognition to test memory, Rotarod to evaluate cerebellar integrity, Elevated Plus Maze to assay anxiety, Social Preference, and Eyeblink Conditioning, a cerebellar-dependent and endocannabinoid-mediated task. Lipid analysis was performed on PND70 tissue samples of cerebellar interpositus (IP) nucleus via high-performance liquid chromatography and tandem mass spectrometry. RESULTS/ANTICIPATED RESULTS: Both male and female rats experiencing early life stress exhibited significantly impaired recognition memory (N = 16-20/group). Female rats having undergone stress exhibited decreased social preference compared to normally reared females (N = 11/group). Stressed males showed facilitated eyblink conditioning compared to normally reared males (N = 7-9/group). There were no group differences in rotarod or elevated plus maze performance or CORT levels at PND8 or 70 across rearing groups. At PND70, male rats experiencing early life stress exhibited a significant decrease in 2-arachidonoyl glycerol (2-AG) and arachidonic acid levels in the IP nucleus compared to normally reared males (N = 8-9/group). Compared to normally reared females, those experiencing early life stress exhibited a significant increase in prostaglandin E2 levels in the IP nucleus (N = 6-7/group). DISCUSSION/SIGNIFICANCE OF IMPACT: Early life stress, induced by limited bedding, resulted in sex-specific behavioral and lipid impairments. Results suggest that stress causes long-term alterations in endocannabinoid dynamics in males in the cerebellar IP nucleus and sex-related lipids in female cerebellum. These changes may contribute to observed long-term behavioral aberrations. Moreover, findings suggest these behavioral changes may be the result of negative-feedback dysfunction (as evidenced by decreased endocannabinoids in males) or increased neural inflammation or proliferation (as evidenced by increased prostaglandins in females). Future analysis will quantify mRNA and protein for cannabinoid receptors to better characterize aberrations to this system. Moreover, other neural regions dense with cannabinoid receptors (i.e., PFC, hippocampus) will be investigated. This work provides a basis for understanding stress impacts on the development of cognitive deficits observed in psychotic and anxiety disorders. Specifically, facilitation of eyblink conditioning complements research in humans with anxiety disorders. Broadly, understanding stress-related endocannabinoid dysregulation may provide insights into risks for, and the development of, psychopathology and uncover novel therapeutic targets with high translational power.


Author(s):  
Morgan H. James ◽  
Erin J. Campbell ◽  
Frederick R. Walker ◽  
Doug W. Smith ◽  
Heather N. Richardson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document