scholarly journals Towards mechanical characterization of soft digital materials for multimaterial 3D-printing

2018 ◽  
Vol 123 ◽  
pp. 62-72 ◽  
Author(s):  
Viacheslav Slesarenko ◽  
Stephan Rudykh

The objective of this study was to determine appropriate orientation for the scaffold by using 3D printing. This has been done by fabrication in vertical and horizontal orientation and then the specimen were subjected to tensile and compressive test for its mechanical characterization of a specimen, a suitable orientation was found to be horizontal. Finally, FEA analysis was also carried out to match with experimental result


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document