Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process

2014 ◽  
Vol 44 (3) ◽  
pp. 771-777 ◽  
Author(s):  
Seyeon Hwang ◽  
Edgar I. Reyes ◽  
Kyoung-sik Moon ◽  
Raymond C. Rumpf ◽  
Nam Soo Kim
2019 ◽  
Vol 14 (51) ◽  
pp. 534-540 ◽  
Author(s):  
Joseph Marae Djouda ◽  
Donato Gallittelli ◽  
Marouene Zouaoui ◽  
Ali Makke ◽  
Julien Gardan ◽  
...  

2018 ◽  
Vol 237 ◽  
pp. 02006 ◽  
Author(s):  
Katarzyna Bryll ◽  
Elżbieta Piesowicz ◽  
Paweł Szymański ◽  
Wojciech Ślączka ◽  
Marek Pijanowski

3D printing technology was developed nearly 30 years ago. One of its characteristics is that instead of removing materials, 3D printing creates 3D elements directly from CAD models, adding one layer of material on another. This offers a beneficial capability of making complex elements in terms of shape and materials, impossible to be manufactured by traditional methods. Owing to intensive research in recent years, considerable progress has been achieved in the development and commercialisation of new innovative processes of 3D printing by fused deposition modeling (FDM), including printing of composite materials. The study outlines the main methods of creating polymer composite structures using FDM technology.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1407
Author(s):  
Ching Hao Lee ◽  
Farah Nadia Binti Mohammad Padzil ◽  
Seng Hua Lee ◽  
Zuriyati Mohamed Asa’ari Ainun ◽  
Luqman Chuah Abdullah

In this review, the potential of natural fiber and kenaf fiber (KF) reinforced PLA composite filament for fused deposition modeling (FDM) 3D-printing technology is highlighted. Additive manufacturing is a material-processing method in which the addition of materials layer by layer creates a three-dimensional object. Unfortunately, it still cannot compete with conventional manufacturing processes, and instead serves as an economically effective tool for small-batch or high-variety product production. Being preformed of composite filaments makes it easiest to print using an FDM 3D printer without or with minimum alteration to the hardware parts. On the other hand, natural fiber-reinforced polymer composite filaments have gained great attention in the market. However, uneven printing, clogging, and the inhomogeneous distribution of the fiber-matrix remain the main challenges. At the same time, kenaf fibers are one of the most popular reinforcements in polymer composites. Although they have a good record on strength reinforcement, with low cost and light weight, kenaf fiber reinforcement PLA filament is still seldom seen in previous studies. Therefore, this review serves to promote kenaf fiber in PLA composite filaments for FDM 3D printing. To promote the use of natural fiber-reinforced polymer composite in AM, eight challenges must be solved and carried out. Moreover, some concerns arise to achieve long-term sustainability and market acceptability of KF/PLA composite filaments.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


Sign in / Sign up

Export Citation Format

Share Document