DSP based proportional integral sliding mode controller for photo-voltaic system

Author(s):  
Subramanya Bhat ◽  
H.N. Nagaraja
2012 ◽  
Author(s):  
Mohamad Noh Ahmad ◽  
Johari H. S. Osman ◽  
Mohd. Ruddin A. Ghani

Kertas kerja ini membincangkan pengawal ragam gelangsar ternyahpusat untuk sistem dalam kategori takpasti, tak lelurus tersaling hubung. Andaian yang dipakai dalam kertas kerja ini ialah loji yang hendak dikawal dianggap sebagai suatu sistem yang diwakili oleh subsistem–subsistem yang tersaling hubung di antara satu sama lain dan dinamik setempat untuk setiap subsistem pula diwakili oleh nilai nominalnya di samping ketakpastian berparameter terbatas. Di samping itu, dinamik untuk saling hubungan di antara subsistem juga diandaikan sebagai diwakili dengan cara yang serupa dan syarat padanan (matching conditions) benar untuk semua subsistem. Suatu pengawal ragam gelangsar ternyahpusat yang robust telah berjaya dihasilkan supaya untuk setiap subsistem, trajektori sebenar sistem akan menjejak trajektori yang dikehendaki menggunakan hanya mklumat dari pemboleh ubah keadaan setempat. Ragam gelangsar berkadaran–kamiran (Pi) sengaja dipilih untuk memastikan kestabilan dinamik keseluruhan sistem terjamin (meliputi fasa menjangkau dan fasa menggelangsar). Pembuktian secara matematik pengawal yang dicadangkan turut diketengahkan dalam kertas kerja ini dan keputusannya pula diperiksa benar tidaknya melalui satu kajian kes. Kata kunci: Sistem skala besar; Kawalan ragam gelangsar ternyahpusat; Pengawal menjejak; Ketakpastian terpadan A decentralized sliding mode controller for a class of nonlinear interconnected uncertain systems is presented in this paper. It is assumed that the plant to be controlled is represented by interconnected sub–systems and the local dynamics of each sub–system is represented by its nominal and bounded parametric uncertainties. It is also assumed that the interconnection dynamics is also represented in the same manner and it is further assumed that the matching conditions hold for every sub–system. A robust decentralized sliding mode controller is derived such that for each sub–system, the actual trajectory tracks the desired trajectory using only the local states information. The Proportional–Integral sliding mode is chosen to ensure the stability of the overall dynamics during the entire period i.e. the reaching phase and the sliding phase. Mathematical proof of the proposed controller is presented and the results are verified using a case study. Key words: Large scale system; Decentralized sliding mode control; Tracking controller; Matched uncertainties


Author(s):  
Ishan Chawla ◽  
Vikram Chopra ◽  
Ashish Singla

AbstractFrom the last few decades, inverted pendulums have become a benchmark problem in dynamics and control theory. Due to their inherit nature of nonlinearity, instability and underactuation, these are widely used to verify and implement emerging control techniques. Moreover, the dynamics of inverted pendulum systems resemble many real-world systems such as segways, humanoid robots etc. In the literature, a wide range of controllers had been tested on this problem, out of which, the most robust being the sliding mode controller while the most optimal being the linear quadratic regulator (LQR) controller. The former has a problem of non-robust reachability phase while the later lacks the property of robustness. To address these issues in both the controllers, this paper presents the novel implementation of integral sliding mode controller (ISMC) for stabilization of a spatial inverted pendulum (SIP), also known as an x-y-z inverted pendulum. The structure has three control inputs and five controlled outputs. Mathematical modeling of the system is done using Euler Lagrange approach. ISMC has an advantage of eliminating non-robust reachability phase along with enhancing the robustness of the nominal controller (LQR Controller). To validate the robustness of ISMC to matched uncertainties, an input disturbance is added to the nonlinear model of the system. Simulation results on two different case studies demonstrate that the proposed controller is more robust as compared to conventional LQR controller. Furthermore, the problem of chattering in the controller is dealt by smoothening the controller inputs to the system with insignificant loss in robustness.


Sign in / Sign up

Export Citation Format

Share Document