Design considerations of the multi-resonant converter as a constant current source for electrolyser utilisation

Author(s):  
Siniša Zorica ◽  
Marko Vukšić ◽  
Tihomir Betti
2020 ◽  
Vol 1633 ◽  
pp. 012138
Author(s):  
Tao Xue ◽  
Xiangnan Hu ◽  
Chun’en Fang ◽  
Chunyan Zeng ◽  
Xuhui Fu ◽  
...  

2011 ◽  
Vol 82 (1) ◽  
pp. 013906 ◽  
Author(s):  
D. Talukdar ◽  
R. K. Chakraborty ◽  
Suvendu Bose ◽  
K. K. Bardhan

2013 ◽  
Vol 718-720 ◽  
pp. 450-454
Author(s):  
Ning Yang ◽  
Hai Ting Zhu ◽  
Shao Shan Zhong

Thermistor has a large temperature range, good stability and resistance to oxidation, which occupies an important position in the low-temperature measurement. This article describes new two-wire thermistor temperature measurement device using the Freescale MC9S12XS128 MCU with sampling capacitance. The device is composed of the MCU with its own A/D, MC9S12XS128 MCU, sampling capacitance, amplifier, boosted circuit, data acquisition and processing system, constant current source, etc. Using constant current source and 16-bit A/D converter designs the temperature measurement circuit, it can eliminate the effect from the conductor resistances in the traditional two-wire resistance temperature measurement system and reduce the measurement error which conductor resistances bring. The method is simple, practical, with high accuracy, strong anti-interference ability and other characteristics.


2014 ◽  
Vol 945-949 ◽  
pp. 1924-1931
Author(s):  
Hai Qing Yao ◽  
Heng Cao ◽  
Fei Jiang ◽  
Bo Sun

Based on the excellent performance of Pt100, a portable low-cost precision temperature sensor has been designed, whose core chips are REF03, AD8603, AD7788 and precision resistors. Constant current source (CCS) for 4-wire Pt100 is constituted by REF03, AD8603 and precision resistors. AD7788 measures the differential signal on Pt100 and suppresses the common mode interference signal. Analysis software running on the micro control unit (MCU) filters the digital code from AD7788, and then calculates the current temperature value according to the resistance-temperature mathematical model of Pt100. Analysis and experimental results show that the temperature measurement accuracy of the sensor can reach ±1°C within the range of 0°C-650°C.


Sign in / Sign up

Export Citation Format

Share Document