The Method of Conductor Resistance Autocompensation in New Two-Wire Thermistor Temperature Measurement

2013 ◽  
Vol 718-720 ◽  
pp. 450-454
Author(s):  
Ning Yang ◽  
Hai Ting Zhu ◽  
Shao Shan Zhong

Thermistor has a large temperature range, good stability and resistance to oxidation, which occupies an important position in the low-temperature measurement. This article describes new two-wire thermistor temperature measurement device using the Freescale MC9S12XS128 MCU with sampling capacitance. The device is composed of the MCU with its own A/D, MC9S12XS128 MCU, sampling capacitance, amplifier, boosted circuit, data acquisition and processing system, constant current source, etc. Using constant current source and 16-bit A/D converter designs the temperature measurement circuit, it can eliminate the effect from the conductor resistances in the traditional two-wire resistance temperature measurement system and reduce the measurement error which conductor resistances bring. The method is simple, practical, with high accuracy, strong anti-interference ability and other characteristics.

2013 ◽  
Vol 423-426 ◽  
pp. 2559-2562 ◽  
Author(s):  
Long Liu ◽  
Yun Cui Zhang ◽  
Shen Hua ◽  
Jun Xiao ◽  
Li Jia Huang

This article describes the design of High-Precision Temperature Measurement System based on C8051F350 and PT100. The system consists of the control circuit, temperature sensors, signal amplification circuit, field bus interface circuit. The system adopts constant current source method and a differential measurement circuit. A 24-bit A/D built in the CPU is used to sample the data and Non-linear compensation by software algorithms for it. The design improves the accuracy of the temperature measurement system.


2012 ◽  
Vol 529 ◽  
pp. 507-511
Author(s):  
Lei Chen ◽  
Zhong Dong Wang

The temperature in fiber drawing is one of the key factors influencing fiber’s performance. To the temperature measurement and control problem, the four-wire lead configuration of Pt100 with current excitation was adopted, the signal conditioning circuit includes constant current source, instrumentation amplifier and anti-aliasing filter. The computer collected signals from the conditioning circuit and output control signals by data acquisition card PCI-6221M. The software program was based on LabVIEW, the function relationship between resistance and temperature based on international thermometric scale and the digital filter were applied to calculate temperature. The improved PID control algorithm and the PWM technique were used to realize the temperature control. The experiment results show that the deviation is 0.71°C when the average temperature of the furnace center is 170.25 °C, which satisfies the design requirements.


2011 ◽  
Vol 301-303 ◽  
pp. 1333-1338
Author(s):  
Qing Fu Du

Calibration of general temperature sensor, platinum resistor is done with measuring its zero resistance and dispersity of linear system and compensating. Accurate constant current source is used to provide platinum resistor sensor power and four-wire measuring method is designed for self-compensation of lead wire resistance. With amplifying the changing signal of platinum using amplifier of high precision and low temperature drift, and MCPU digital filtering, highly accurate temperature measurement result is got finally.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4467 ◽  
Author(s):  
Guangyu Zuo ◽  
Yinke Dou ◽  
Xiaomin Chang ◽  
Yan Chen ◽  
Chunyan Ma

Temperature profiles of sea ice have been recorded more than a few decades. However, few high-precision temperature sensors can complete the observation of temperature profile of sea ice, especially in extreme environments. At present, the most widely used sea ice observation instruments can reach an accuracy of sea ice temperature measurement of 0.1 °C. In this study, a multilayer sea ice temperature sensor is developed with temperature measurement accuracy from −0.0047 °C to 0.0059 °C. The sensor system composition, structure of the thermistor string, and work mode are analyzed. The performance of the sensor system is evaluated from −50 °C to 30 °C. The temperature dependence of the constant current source, the amplification circuit, and the analog-to-digital converter (ADC) circuit are comprehensive tested and quantified. A temperature correction algorithm is designed to correct any deviation in the sensor system. A sea-ice thickness discrimination algorithm is proposed in charge of determining the thickness of sea ice automatically. The sensor system was field tested in Wuliangsuhai, Yellow River on 31 January 2018 and the second reservoir of Fen River, Yellow River on 30 January 2018. The integral practicality of this sensor system is identified and examined. The multilayer sea ice temperature sensor will provide good temperature results of sea ice and maintain stable performance in the low ambient temperature.


2011 ◽  
Vol 82 (1) ◽  
pp. 013906 ◽  
Author(s):  
D. Talukdar ◽  
R. K. Chakraborty ◽  
Suvendu Bose ◽  
K. K. Bardhan

2014 ◽  
Vol 945-949 ◽  
pp. 1924-1931
Author(s):  
Hai Qing Yao ◽  
Heng Cao ◽  
Fei Jiang ◽  
Bo Sun

Based on the excellent performance of Pt100, a portable low-cost precision temperature sensor has been designed, whose core chips are REF03, AD8603, AD7788 and precision resistors. Constant current source (CCS) for 4-wire Pt100 is constituted by REF03, AD8603 and precision resistors. AD7788 measures the differential signal on Pt100 and suppresses the common mode interference signal. Analysis software running on the micro control unit (MCU) filters the digital code from AD7788, and then calculates the current temperature value according to the resistance-temperature mathematical model of Pt100. Analysis and experimental results show that the temperature measurement accuracy of the sensor can reach ±1°C within the range of 0°C-650°C.


Sign in / Sign up

Export Citation Format

Share Document