Effects of microstructure on rolling contact fatigue of a wind turbine gear based on crystal plasticity modeling

2019 ◽  
Vol 120 ◽  
pp. 73-86 ◽  
Author(s):  
Wei Wang ◽  
Huaiju Liu ◽  
Caichao Zhu ◽  
Peitang Wei ◽  
Jinyuan Tang
2013 ◽  
Vol 768-769 ◽  
pp. 723-732 ◽  
Author(s):  
Jürgen Gegner ◽  
Wolfgang Nierlich

Rolling bearings in wind turbine gearboxes occasionally fail prematurely by so-called white etching cracks. The appearance of the damage indicates brittle spontaneous tensile stress induced surface cracking followed by corrosion fatigue driven crack growth. An X-ray diffraction based residual stress analysis reveals vibrations in service as the root cause. The occurrence of high local friction coefficients in the rolling contact is described by a tribological model. Depth profiles of the equivalent shear and normal stresses are compared with residual stress patterns and a relevant fracture strength, respectively. White etching crack failures are reproduced on a rolling contact fatigue test rig under increased mixed friction. Causative vibration loading is evident from residual stress measurements. Cold working compressive residual stresses are an effective countermeasure.


2020 ◽  
Vol 43 (7) ◽  
pp. 1368-1383
Author(s):  
Hao Zhou ◽  
Peitang Wei ◽  
Huaiju Liu ◽  
Caichao Zhu ◽  
Cheng Lu ◽  
...  

Author(s):  
Tedric A. Harris ◽  
Michael N. Kotzalas

The standard rolling contact fatigue life calculations currently in use by the rolling bearing industry is based on the first occurrence of subsurface-initiated spalling of a raceway or roller surface. However, wind turbine gearbox roller bearings have been suffering from another damage mode, which manifests itself as micro-pitting. The micro-pitting, which is spalling on a micro scale, by itself can be tolerated in its early stages; i.e. the roller bearing will still function properly. As the damaged bearing continues to operate, the micro-pitting propagates and at the later stages, often termed peeling, the pitting becomes deep enough to reach the appearance of traditional subsurface-initiated spalling. To better understand the phenomenon micro-pitting and its causes, this study was conducted to review published literature on the topic as it relates to bearing operation. The key findings were the need for a low specific lubricant film thickness parameter, and some component of sliding velocity in the contacting surface. With this knowledge, a proposed test scheme including these variables could be created from which a method to predict the risk of micro-pitting may be determined.


2012 ◽  
Vol 54 (5) ◽  
pp. 304-312
Author(s):  
Florian Dörner ◽  
Otto Kleiner ◽  
Christian Schindler ◽  
Peter Starke ◽  
Dietmar Eifler

Sign in / Sign up

Export Citation Format

Share Document