contact fatigue life
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Graham Keep ◽  
Mark Wolka ◽  
Beth Brazitis

Abstract Through hardened steel ball fatigue failure is an atypical mode of failure in a rolling element bearing. A recent full-scale bench test resulted in ball spalling well below calculated bearing life. Subsequent metallurgical analysis of the spalled balls found inferior microstructure and manufacturing methods. Microstructural analysis revealed significant carbide segregation and inclusions in the steel. These can result from substandard spheroidized annealing and steel making practices. In addition, the grain flow of the balls revealed a manufacturing anomaly which produced a stress riser in the material making it more susceptible to crack initiation. The inferior manufactured balls caused at least an 80% reduction in rolling contact fatigue life of the bearing.


2021 ◽  
Vol 19 (1) ◽  
pp. 6-17
Author(s):  
V. S. Kossov ◽  
A. V. Savin ◽  
O. G. Krasnov

Adoption of heavy haul traffic on many railroads, comprising Russian railways, has highlighted the relevance of assessing the effect of increased axial loads on the contact fatigue life of rails.The article describes a set of theoretical studies carried out to create a scientifically substantiated method for predicting the contact fatigue life of rails depending on the values of axial loads. The stress-strain state of the contact area has been determined using the finite element model of wheel rolling on a rail. It has been found that the wheel-rail rolling contact area undergoes complex multiaxial loading with the simultaneous action of normal and shear strains. Based on the analysis of models describing multiaxial fatigue damage, the Brown–Miller model was chosen, which considers the simultaneous action of normal strains at the contact area and of maximum shear strains, which most fully describes the stress-strain state of the wheel-rail rolling contact area. To apply the Brown–Miller model, fatigue stress-strain curves for rail steel have been identified. Based on the analysis of methods for determining the parameters of stress-strain curves carried out by V. A. Troschenko, a modified Roessle– Fatemi hardness method has been applied. Based on the experimentally determined values of hardness on the rolling surface, the parameters of the curves of elastic and plastic fatigue have been revealed by calculation and experiment. To establish the damaging effect of the load from wheel rolling on a rail, the concept of relative damage per rolling cycle had been assumed which is the value inverse to the number of cycles preceding formation of a contact-fatigue crack at a given value of the axial load.Calculations of the relative damage rate of the rolling surface of rails caused by contact fatigue defects were carried out with the Fatigue software package considering mean values of the indicators of the degree of fatigue strength and plasticity of rail steel and the calculated stresses in the wheel-rail contact area, as well as the plasticity correction using Neuber method. The polynomial dependence of relative damageability of the rolling surface of rails is obtained. The established functional dependence of relative damageability of the rolling surface of rails on the values of vertical forces can be used as the basis for the developed methodology for predicting the contact fatigue life of rails.


Author(s):  
Ye Zhou ◽  
Caichao Zhu ◽  
Huaiju Liu ◽  
Houyi Bai ◽  
Xiaona Xu

Gear contact fatigue is becoming a primary limitation for the growing demand of power density and service life in gear-driven equipment. The unchecked surface fatigue crack could further cause premature failure and put a serious risk to the safety and reliability of mechanical systems. In this work, an attempt is made to investigate the effects of rolling-sliding and mild wear on contact fatigue behavior. A comprehensive contact model is developed to capture the variation instantaneous pressure and stress field is calculated with the transient mixed EHL approach. Rolling-sliding contact is simulated with the time-varying roughness topography updated by Archard wear equation. The stress cycles are extracted and the relative contact fatigue life is obtained by using Zaretsky criterion. Results suggest that in rolling-sliding contact the contact fatigue life is obviously lower compared with pure rolling. The increases in the number and amplitude of stress micro-cycles is found to be the main contributors to the reduction of fatigue life. Mild wear tends to smooth the surface, subsequently mitigates the stress concentration and reduces stress cycles, then decrease the risk of surface contact fatigue.


2021 ◽  
Vol 2021.59 (0) ◽  
pp. 05a5
Author(s):  
Hirotomo HOSOI ◽  
Yugo KAMEI ◽  
Hirotoshi AKIYAMA ◽  
Jusei MAEDA ◽  
Masanori SEKI

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5438
Author(s):  
Pengtao Liu ◽  
Zilong Lin ◽  
Chunpeng Liu ◽  
Xiujuan Zhao ◽  
Ruiming Ren

A GPM-30 fatigue machine was used to investigate the influence of surface ultrasonic rolling (SURT) on the rolling contact fatigue (RCF) life of D2 wheel steel. The experimental results present that the RCF life of the grinding processing sample is 4.1 × 105 cycles. During the RCF process, the flaking of the fine grain layer and high surface roughness of the grinding processing sample cause the production of RCF cracks. When the samples are treated by SURT with 0.2 MPa and 0.4 MPa, the RCF life is 9.2 × 105 cycles and 9.6 × 105 cycles, respectively. After SURT, the surface roughness of the samples is reduced, and a certain thickness of gradient-plastic-deformation layer and a residual-compressive-stress layer are produced. These factors lead to the improvement of the RCF property. However, when the static pressure increases to 0.6 MPa during SURT, the RCF life of the sample is reduced during RCF testing. The micro-cracks, which are formed during SURT, become the crack source and cause the formation of RCF cracks, decreasing of the RCF life.


2020 ◽  
Vol 44 (3) ◽  
pp. 440-451
Author(s):  
Chao Lin ◽  
Peilu Li ◽  
Chunjiang He ◽  
Qingkun Xing

Different from the common face gear pair fixed rotation motion between intersecting axes, the compound transmission of the curve-face gear is a new motion form, which can convert rotational motion into rotation and movement motion. To solve the contact fatigue life problem of this new motion form gear pair, a new contact fatigue life calculation method of the compound transmission curve-face gear pair was proposed. Based on the space gear engagement principle and the fracture mechanics theory, the theoretical contact fatigue model of the curve-face gear composite transmission was established. Considering that the contact load for every tooth is time-varying in the half-period of the curve-face gear, the contact fatigue life stage of the curve-face gear was divided into crack initiation and crack growth, and the crack growth fatigue life for each tooth was calculated using the finite element method. The curve-face gear pair was processed in the five-axis NC machining center and the compound transmission experiment platform of the curve-face gear was set up to measure the tooth surface dynamic contact stress, and the overall life of the curve-face gear was predicted. The comparison analysis between theoretical and experimental results verified the correctness of the theoretical contact fatigue calculation model.


2020 ◽  
Vol 86 (4) ◽  
pp. 46-55
Author(s):  
N. A. Makhutov ◽  
V. S. Kossov ◽  
E. S. Oganyan ◽  
G. M. Volokhov ◽  
M. N. Ovechnikov ◽  
...  

Analysis of the operational data related to rails failure showed that contact-fatigue defects consistently hold a prominent place. The goal of the study is to show the possibilities of using modern numerical methods in calculation assessment of the service life of rails before the onset of contact fatigue crack formation on a running surface depending on the values of axial load. To calculate a stress-strain state in the area of contact interaction between the wheel and rail a detailed finite-element model implemented in the MSC. Marc software package is used. The analysis revealed complex multiaxial and non-proportional nature of the stress-strain state. The Brown – Miller multiaxial fatigue model implemented in the MSC. Fatigue software package was taken to determine accumulation of the contact fatigue damages on a rail running surface. The model is based on the assumption that maximum fatigue damages in the metal occur in the area with the maximum shear stress. The impact of normal stresses in this area is also taken into account. The results of a comparative computational analysis of the rail life time confirm that the service life decreases with increasing axial loads, all other conditions being the same. With a share of 20% of freight trains with axle loads of 25 tonf in a daily pattern one should expect a decrease in the contact fatigue life of rails by 3 – 4 %. It is possible to improve the method for prediction of the contact fatigue life of rails in terms of experimental definition of the fatigue and strength characteristics of the rail steel depending on the degree of hardening of the running surface, their probabilistic properties and the use of a cumulative distribution of vertical forces taking into account the structure of the freight traffic passing through the section.


Sign in / Sign up

Export Citation Format

Share Document