Evolution of the residual stresses of types I, II, and III of duplex stainless steel during cyclic loading in high and very high cycle fatigue regimes

2021 ◽  
Vol 142 ◽  
pp. 105972
Author(s):  
Hongwang Fu ◽  
Benjamin Dönges ◽  
Ulrich Krupp ◽  
Ullrich Pietsch ◽  
Claus-Peter Fritzen ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xu Jia ◽  
Yang Ou Xiang ◽  
Hu Yuan Pei ◽  
Song Wei

PurposeThe investigations could guide the structural design and fatigue life prediction of air-conditioning compressor valve plates.Design/methodology/approachThe High-Cycle Fatigue (HCF) and Very-High-Cycle Fatigue (VHCF) behaviors of stainless steel used for air-conditioning compressor valve plates were investigated. Monotonic and cyclic loading conditions were designed to explore the fatigue responses according to the load characteristics of the structure.FindingsThe crack initiation can be observed as the arc-shaped cracks at both sides of specimens and Y-shaped crack bifurcation in the specimens. Moreover, the middle section and the cracks at both ends are not connected to the surface of the specimen. The stress-life results of the materials under two directions (vertical and horizontal) were provided to examine the difference in fatigue strength.Originality/valueMonotonic and cyclic loading conditions were designed to explore the fatigue responses according to the load characteristics of the structure. Based on the experimental data, the results indicate that specimens under cyclic loading conditions could demonstrate better mechanical performance than static loadings.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4820
Author(s):  
Yongtao Hu ◽  
Yao Chen ◽  
Chao He ◽  
Yongjie Liu ◽  
Qingyuan Wang ◽  
...  

Effect of microstructure on the crack initiation and early propagation mechanism in the very high cycle fatigue (VHCF) regime was studied in 316L stainless steel (316L SS) by atomic force microscope (AFM) and electron back scattered diffraction (EBSD). The results show that small fatigue cracks initiate from the slip band near the grain boundaries (GBs) or the twin boundaries (TBs). Early crack propagation along or cross the slip band is strongly influenced by the local microstructure such as grain size, orientation, and boundary. Besides, the gathered slip bands (SBs) are presented side by side with the damage grains of the run-out specimen. Finally, it is found that dislocations can either pass through the TBs, or be arrested at the TBs.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 412 ◽  
Author(s):  
Zhihong Xiong ◽  
Takashi Naoe ◽  
Masatoshi Futakawa

Widely used for structural materials in nuclear engineering, 316L austenitic stainless steel undergoes very high cycle fatigue (VHCF) throughout its service life. Since defects caused by service conditions are unavoidable in many engineering components during service life, the effects should be properly understood. In the present study, the effect of surface defects on the VHCF behavior were investigated on solution annealed (SA) and cold-worked (CW) 316L. Surface defects were artificially created using indentation. The VHCF test was conducted using an ultrasonic fatigue testing system. The results showed that the fatigue crack initiation was independent of the indent with the applied range of depth in this research. Furthermore, the critical depth of the indent was evaluated based on an empirical formula (Murakami’s model). In the case of SA 316L, the VHCF strength was not affected when the indent depth was less than 40 μm, which is consistent with the value obtained from the empirical formula. In the case of 20% CW 316L, the VHCF strength was not affected when the indent depth was less than 80 μm. The experimental results, i.e., the critical depth of the indent, were much larger than the results obtained from the empirical formula, and might have been caused by the plastic deformation, residual stress, and probable deformation-induced martensite transition around the indent.


Sign in / Sign up

Export Citation Format

Share Document