Implementation of Sobol’s sensitivity analysis to cyclic plasticity model with parameter uncertainty

2022 ◽  
Vol 155 ◽  
pp. 106578
Author(s):  
Weiqi Du ◽  
Shuxin Li ◽  
Yuanxin Luo
2019 ◽  
Vol 11 (3) ◽  
pp. 168781401982998 ◽  
Author(s):  
Michal Peč ◽  
František Šebek ◽  
Josef Zapletal ◽  
Jindřich Petruška ◽  
Tasnim Hassan

The plasticity models in finite element codes are often not able to describe the cyclic plasticity phenomena satisfactorily. Developing a user-defined material model is a demanding process, challenging especially for industry. Open-source Code_Aster is a rapidly expanding and evolving software, capable of overcoming the above-mentioned problem with material model implementation. In this article, Chaboche-type material model with kinematic hardening evolution rules and non-proportional as well as strain memory effects was studied through the calibration of the aluminium alloy 2024-T351. The sensitivity analysis was performed prior to the model calibration to find out whether all the material model parameters were important. The utilization of built-in routines allows the calibration of material constants without the necessity to write the optimization scripts, which is time consuming. Obtaining the parameters using the built-in routines is therefore easier and allows using the advanced modelling for practical use. Three sets of material model parameters were obtained using the built-in routines and results were compared to experiments. Quality of the calibration was highlighted and drawbacks were described. Usage of material model implemented in Code_Aster provided good simulations in a relatively simple way through the use of an advanced cyclic plasticity model via built-in auxiliary functions.


Author(s):  
Seiichiro Tsutsumi

In order to simulate mechanical fatigue phenomena under macroscopically elastic condition, the plastic stretching within a yield surface has to be described, whilst the plastic strain is induced remarkably as the stress approaches the dominant yielding state. In this study, a phenomenological plasticity model, proposed for the description of the cyclic loading behavior observed for typical carbon steels during the high-cycle fatigue subjected to stresses lower than the yield stress, is applied for the prediction of fatigue initiation life. The model is formulated based on the unconventional plasticity model and is applied for materials obeying isotropic and kinematic hardening law. The mechanical responses under cyclic loading conditions are examined briefly. Finally, the initiation life of fatigue cracking is discussed based on the proposed model with the damage counting parameter.


2017 ◽  
Vol 113 ◽  
pp. 34-46 ◽  
Author(s):  
Radim Halama ◽  
Alexandros Markopoulos ◽  
Roland Jančo ◽  
Matěj Bartecký

Sign in / Sign up

Export Citation Format

Share Document