Prediction of Fatigue Crack Initiation Life Based on the Extended Cyclic Plasticity Model

Author(s):  
Seiichiro Tsutsumi

In order to simulate mechanical fatigue phenomena under macroscopically elastic condition, the plastic stretching within a yield surface has to be described, whilst the plastic strain is induced remarkably as the stress approaches the dominant yielding state. In this study, a phenomenological plasticity model, proposed for the description of the cyclic loading behavior observed for typical carbon steels during the high-cycle fatigue subjected to stresses lower than the yield stress, is applied for the prediction of fatigue initiation life. The model is formulated based on the unconventional plasticity model and is applied for materials obeying isotropic and kinematic hardening law. The mechanical responses under cyclic loading conditions are examined briefly. Finally, the initiation life of fatigue cracking is discussed based on the proposed model with the damage counting parameter.

2016 ◽  
Vol 725 ◽  
pp. 351-356
Author(s):  
Fusahito Yoshida ◽  
Hiroshi Hamasaki ◽  
Takeshi Uemori

This paper proposes a cyclic plasticity model to describe the closure of a cyclic stress-strain hysteresis loop based on the Y-U model. In this model, the backstress moves in a cyclic memory surface following a newly proposed kinematic hardening law. For this model just the same Y-U parameters can be used, and no additional material parameters are needed. By using a supplementary rule, this model is also able to describe ratcheting.


Author(s):  
D. Gustafsson ◽  
J. J. Moverare ◽  
K. Simonsson ◽  
S. Sjöström

Turbine disks are of large importance to turbine designers as they are exposed to hot environment and subjected to high loads. In order to analyze such components with respect to fatigue crack initiation, the work generally starts with a rigorous analysis of the first few cycles, during which an important stress redistribution will always take place in an inelastic structure. In this work, the nonlinear kinematic hardening law by Ohno and Wang (1998, “Constitutive Modeling of Cyclic Plasticity With Emphasis on Ratchetting,” Int. J. Mech. Sci., 40, pp. 251–261) has been used in combination with an isotropic softening law for describing the initial stress-strain distribution for strain controlled uniaxial tests of the material Inconel 718. Focus has been placed on finding a simple model with few material parameters and to describe the initial softening and the comparatively small mean stress relaxation observed during the material testing. The simulation results obtained by using the model fit the experimental results well.


Author(s):  
Rong Jiao ◽  
Stelios Kyriakides

A buried offshore pipeline is essentially axially constrained by the soil cover. Heating by the passage of hot oil at high pressure can plastically deform it. The deformation involves expansion of the diameter, which for thinner pipes can be accompanied by axisymmetric wrinkling. During a lifetime of 20 or more years, lines experience regular startup and shutdown cycles. This study examines how this cycling affects wrinkling and the hoop expansion of such lines. A set of experiments on super-duplex tubes with D/t of 28.5 was conducted using the following idealized cyclic loading history. A tube is first pressurized and then compressed into the plastic range to a level that initiates wrinkling. It is then cycled under stress control about a compressive mean stress while the pressure is kept constant. The combined loads cause simultaneous ratcheting in the hoop and axial directions as well as a gradual growth of the wrinkles. At some stage the amplitude of the wrinkles starts to grow exponentially with the number of cycles N leading to localization and collapse. The rate of ratcheting and the number of cycles to failure depend on the initial compressive pre-strain, the internal pressure and the stress cycle parameters. The problem is modeled as a shell with initial axisymmetric imperfections. A challenge in the simulations is that the cyclic plasticity model that is used must be capable of capturing correctly the type of biaxial material ratcheting that develops. The Dafalias-Popov two-surface nonlinear kinematic hardening model, enhanced and suitably calibrated is shown to capture the prevalent ratcheting deformations correctly leading to predictions that are in good agreement with the experimental results. The model is then used to evaluate the ratcheting behavior of pipes under thermal-pressure cyclic loading histories seen by buried pipelines.


Author(s):  
Panagiotis J. Charitidis

The present study tries to present a cyclic hardening model with the aim to simulate quantitatively the material response under strain controlled cyclic loading in tension-compression, of specified axial deformation. A numerical study was carried out to investigate the cyclic constitutive behaviour of alloy Indium under viscoplastic deformation. The analysis was performed under prescribed symmetric strain-controlled cyclic loading. The model contains both isotropic and kinematic hardening components, while the analysis were performed using Comsol Multiphysics for only 60 seconds duration. The kinematic hardening was described by using multiple back stresses. Multiple back stresses can provide a smoother transition between the elastic and plastic deformation, and it improves the general shape of the hysteresis loop. Two cases (geometries) have been examined in this study. From the material model and finite element cyclic plasticity model results, it is found that for the same parameters, but different dimensions there is difference on the stress-strain curves as well as on the von Mises stresses.


2007 ◽  
Vol 353-358 ◽  
pp. 2077-2080
Author(s):  
Gab Chul Jang ◽  
Kyong Ho Chang ◽  
Chin Hyung Lee

During the welding process to make welded joints, residual stress is inevitably generated and weld metal is used. Welding Residual stress is influenced on the behavior of welded joints under monotonic and cyclic loading. And the weld metals used in welding process have different mechanical characteristics than structural steels. Therefore, to accurately predict the hysteretic behavior of welded joints, the effect of residual stress and weld metal must be investigated. In this paper, the residual stress distribution in a welded tubular T-joint was investigated by carrying out three-dimensional non-steady heat conduction analysis and three-dimensional thermal elastic-plastic analysis. To consider a effect of base metal(SM490) and weld metal(E71T-1), a cyclic plasticity model was formulated based on monotonic and cyclic loading tests. And the formulated model was applied to three-dimensional elastic-plastic finite element analysis. The effect of residual stress and weld metal on hysteretic behavior of a welded tubular T-joint was investigated by carrying out numerical analyses considering residual stress and cyclic plasticity model of base metal and weld metal respectively.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401982998 ◽  
Author(s):  
Michal Peč ◽  
František Šebek ◽  
Josef Zapletal ◽  
Jindřich Petruška ◽  
Tasnim Hassan

The plasticity models in finite element codes are often not able to describe the cyclic plasticity phenomena satisfactorily. Developing a user-defined material model is a demanding process, challenging especially for industry. Open-source Code_Aster is a rapidly expanding and evolving software, capable of overcoming the above-mentioned problem with material model implementation. In this article, Chaboche-type material model with kinematic hardening evolution rules and non-proportional as well as strain memory effects was studied through the calibration of the aluminium alloy 2024-T351. The sensitivity analysis was performed prior to the model calibration to find out whether all the material model parameters were important. The utilization of built-in routines allows the calibration of material constants without the necessity to write the optimization scripts, which is time consuming. Obtaining the parameters using the built-in routines is therefore easier and allows using the advanced modelling for practical use. Three sets of material model parameters were obtained using the built-in routines and results were compared to experiments. Quality of the calibration was highlighted and drawbacks were described. Usage of material model implemented in Code_Aster provided good simulations in a relatively simple way through the use of an advanced cyclic plasticity model via built-in auxiliary functions.


2014 ◽  
Vol 891-892 ◽  
pp. 1146-1151 ◽  
Author(s):  
Chung Lun Pun ◽  
Qian Hua Kan ◽  
Peter J. Mutton ◽  
Guo Zheng Kang ◽  
Wen Yi Yan

The ratcheting behaviour of a hypereutectoid high strength rail steel with carbon content of 0.85% was experimentally studied under both uniaxial and bi-axial cyclic loadings recently by the authors. To numerically simulate the multiaxial ratcheting behaviour of the rail steel, the Abaqus built-in Lemaitre-Chaboche model was applied first in current study. Following Abaqus documentation, the material data for the Lemaitre-Chaboche model were calibrated from the uniaxial loading test results. Comparing with experimental data, the Lemaitre-Chaboche model with the calibrated data provides overpredictions for the ratcheting responses of the rail steel under both uniaxial and bi-axial loadings. After that, a modified cyclic plasticity model with a coupling multiaxial parameter in the isotropic and kinematic hardening rules was applied for the material. The material data for this modified model were calibrated from both uniaxial and bi-axial loading tests. Comparison between the simulated results and the experimental data show that this modified cyclic plasticity model has the capacity to simulate both uniaxial and multiaxial ratcheting behaviour of the hypereutectoid rail steel with an acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document