An enhanced green fluorescence protein (EGFP)-based reporter assay for quantitative detection of sporulation in Clostridium perfringens SM101

2019 ◽  
Vol 291 ◽  
pp. 144-150 ◽  
Author(s):  
Yuki Wakabayashi ◽  
Hirofumi Nariya ◽  
Mayo Yasugi ◽  
Tomomi Kuwahara ◽  
Mahfuzur R. Sarker ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Min Xu ◽  
Yue-Ying Jiao ◽  
Yuan-Hui Fu ◽  
Nan Jiang ◽  
Yuan-Bo Zheng ◽  
...  

Human respiratory syncytial virus (RSV) is the single most important cause of lower respiratory tract disease in infants and young children and a major viral agent responsible for respiratory tract disease in immunosuppressed individuals and the elderly, but no vaccines and antiviral drugs are available. Herein the recombinant RSV (rRSV) encoding enhanced green fluorescence protein (EGFP, rRSV-EGFP) was constructed and the potential for screening anti-RSV drugs was investigated. The recombinant plasmid of pBRATm-rRSV-EGFP, containing T7 transcription cassette composed of T7 promoter, RSV antigenomic cDNA with EGFP gene, HDV ribozyme (δ), and T7 terminator in the order of 5′ to 3′, was constructed and cotransfected into BHK/T7-9 cells together with helper plasmids encoding N, P, L, and M2-1 gene, respectively. The rescued rRSV-EGFP was confirmed by increasing expression of EGFP over blind passages and by RT-PCR. rRSV-EGFP was comparable to the other two recombinant RSVs encoding red fluorescent protein (RFP, rRSV-RFP) or luciferase (Luc, rRSV-Luc) in the growth kinetic, and there was a difference in sensitivity between them for screening anti-RSV agents based on infection of HEp-2 cells. The EGFP-encoding rRSV has been constructed and rescued successfully and has the potential for high-throughput anti-RSV drug screening in vitro.


Toxins ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 405 ◽  
Author(s):  
Masahiro Nagahama ◽  
Masaya Takehara ◽  
Keiko Kobayashi

Iota toxin produced by Clostridium perfringens is a binary, actin ADP-ribosylating toxin that is organized into the enzymatically active component Ia and the binding component Ib. Lipolysis-stimulated lipoprotein receptor (LSR) has been identified as a cellular receptor of Ib. Here, we investigated the functional interaction between Ib and LSR, where siRNA for LSR blocked the toxin-mediated cytotoxicity and the binding of Ib. The addition of Ib to LSR-green fluorescence protein (GFP)-transfected cells at 4 °C resulted in colocalization with LSR and Ib on the cell surface. Upon transfer of the cells from 4 °C to 37 °C, LSR and Ib were internalized and observed in cytoplasmic vesicles. When the cells were incubated with Ib at 37 °C and fractionated using the Triton-insoluble membrane, Ib oligomer was localized in insoluble factions that fulfilled the criteria of lipid rafts, and LSR was clustered in lipid rafts. To examine the interaction between N-terminal extracellular region of LSR and Ib, we constructed a series of LSR N-terminal deletions. Ten amino acids residues can be deleted from this end without any reduction of Ib binding. However, deletion of 15 N-terminal residues drastically reduces its ability to bind Ib. These results demonstrate that Ib binds to the LSR N-terminal 10 to 15 residues and endocytoses into trafficking endosomes together with LSR.


Sign in / Sign up

Export Citation Format

Share Document