Comparison of virucidal efficacy of sodium hypochlorite, chlorine dioxide, peracetic acid, and ethanol against hepatitis A virus by carrier and suspension tests

Author(s):  
Mengxiao Song ◽  
Md. Iqbal Hossain ◽  
Soontag Jung ◽  
Daseul Yeo ◽  
Zhaoqi Wang ◽  
...  
2010 ◽  
Vol 76 (17) ◽  
pp. 6020-6022 ◽  
Author(s):  
Safaa Sabbah ◽  
Susan Springthorpe ◽  
Syed A. Sattar

ABSTRACT We used a mixture of surrogates (Acinetobacter baumannii, Mycobacterium terrae, hepatitis A virus, and spores of Geobacillus stearothermophilus) for bioagents in a standardized approach to test environmental surface disinfectants. Each carrier containing 10 μl of mixture received 50 μl of a test chemical or saline at 22 ± 2°C. Disinfectant efficacy criteria were ≥6 log10 reduction for the bacteria and the spores and ≥3 log10 reduction for the virus. Peracetic acid (1,000 ppm) was effective in 5 min against the two bacteria and the spores but not against the virus. Chlorine dioxide (CD; 500 and 1,000 ppm) and domestic bleach (DB; 2,500, 3,500, and 5,000 ppm) were effective in 5 min, except for sporicidal activity, which needed 20 min of contact with either 1,000 ppm of CD or the two higher concentrations of DB.


2004 ◽  
Vol 38 (6) ◽  
pp. 1514-1519 ◽  
Author(s):  
Jun Wen Li ◽  
Zhong Tao Xin ◽  
Xin Wei Wang ◽  
Jin Lai Zheng ◽  
Fu Huan Chao

2011 ◽  
Vol 64 (6) ◽  
pp. 1247-1253 ◽  
Author(s):  
E. Vankerckhoven ◽  
B. Verbessem ◽  
S. Crauwels ◽  
P. Declerck ◽  
K. Muylaert ◽  
...  

The main objective of this study is to explore possible synergistic or additive effects of combinations of chemical disinfectants (sodium hypochlorite, peracetic acid, hydrogen peroxide, chlorine dioxide) and UV in their efficacy in inactivating free-living bacteria and removing biofilms. In contrast to most studies, this study examines disinfection of municipal water in a pilot-scale system using a mixed bacterial suspension, which enables a better simulation of the conditions encountered in actual industrial environments. It was shown that the combination of either hypochlorite, hydrogen peroxide, peracetic acid, or chlorine dioxide with UV yielded additive effects on the inactivation of free-living bacteria. Actual synergy was observed for the combination of UV and 5 ppm hydrogen peroxide. Regarding biofilm treatment, additive effects were observed using the combination of hydrogen peroxide and UV. The promising results obtained in this study indicate that the combination of UV and chemical disinfectants can considerably reduce the amount of chemicals required for the effective disinfection and treatment of biofilms.


2007 ◽  
Vol 73 (14) ◽  
pp. 4425-4428 ◽  
Author(s):  
Charles P. Gerba ◽  
Denise Kennedy

ABSTRACT This study was conducted to determine whether enteric viruses (adenovirus, rotavirus, and hepatitis A virus) added to cotton cloth swatches survive the wash cycle, the rinse cycle, and a 28-min permanent press drying cycle as commonly practiced in households in the United States. Detergent with and without bleach (sodium hypochlorite) was added to washing machines containing sterile and virus-inoculated 58-cm2 swatches, 3.2 kg of cotton T-shirts and underwear, and a soiled pillowcase designed to simulate the conditions (pH, organic load, etc.) encountered in soiled laundry. The most important factors for the reduction of virus in laundry were passage through the drying cycle and the addition of sodium hypochlorite. Washing with detergent alone was not found to be effective for the removal or inactivation of enteric viruses, as significant concentrations of virus were found on the swatches (reductions of 92 to 99%). It was also demonstrated that viruses are readily transferred from contaminated cloths to uncontaminated clothes. The use of sodium hypochlorite reduced the number of infectious viruses on the swatches after washing and drying by at least 99.99%. Laundering practices in common use in the United States do not eliminate enteric and respiratory viruses from clothes. The use of bleach can further reduce the numbers of enteric viruses in laundry.


2020 ◽  
Author(s):  
Dmitry Malyshev ◽  
Tobias Dahlberg ◽  
Krister Wiklund ◽  
Per Ola Andersson ◽  
Sara Henriksson ◽  
...  

AbstractContamination of toxic spore-forming bacteria is problematic since spores can survive a plethora of disinfection chemicals. It is also problematic to rapidly detect if the disinfection chemical was active, leaving spores dead. Robust decontamination strategies, as well as reliable detection methods to identify dead from viable spores, are thus critical. Vibrational detection methods such as Raman spectroscopy has been suggested for rapid diagnostics and differentiation of live and dead spores. We investigate in this work, using laser tweezers Raman spectroscopy, the changes in Raman spectra of Bacillus thuringiensis spores treated with sporicidal agents such as chlorine dioxide, peracetic acid, and sodium hypochlorite. We also imaged treated spores using SEM and TEM to verify if any changes to the spore structure can be correlated to the Raman spectra. We found that chlorine dioxide did not change the Raman spectrum or the spore structure; peracetic acid shows a time-dependent decrease in the characteristic DNA/DPA peaks and ∼20 % of the spores were degraded and collapsed; spores treated with sodium hypochlorite show an abrupt drop in DNA and DPA peaks within 20 minutes all though the spore structure was overall intact, however, the exosporium layer was reduced. Structural changes appeared over several minutes, compared to the inactivation time of the spores, which is less than a minute. We conclude that vibrational spectroscopy provides powerful means to detect changes in spores but it might be problematic to identify if spores are live or dead after a decontamination procedure.


2002 ◽  
Vol 38 (3) ◽  
pp. 231-234 ◽  
Author(s):  
Nasser Z. Eleraky ◽  
Leon N.D. Potgieter ◽  
Melissa A. Kennedy

Virucidal efficacy was evaluated for four recently available disinfectants: chlorine dioxide, potassium peroxymonosulfate, a quaternary ammonium compound, and citricidal (grapefruit extract). Sodium hypochlorite (3%) and tap water were used as positive and negative controls respectively. Feline herpesvirus, feline calicivirus, and feline parvovirus were exposed to the manufacturers’ recommended dilutions of the evaluated disinfectants. Both chlorine dioxide and potassium peroxymonosulfate completely inactivated the three viruses used in this study. These disinfectants can aid in controlling nosocomial transmission of viruses with less of the deleterious effects of sodium hypochlorite. The quaternary ammonium compound evaluated in this study and citricidal were not effective against feline calicivirus and feline parvovirus.


Sign in / Sign up

Export Citation Format

Share Document