scholarly journals Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems

2009 ◽  
Vol 3 (2) ◽  
pp. 181-194 ◽  
Author(s):  
J BIRKHOLZER ◽  
Q ZHOU ◽  
C TSANG
Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

Geological carbon sequestration (GCS) is one of the most promising technologies to address the issue of excessive anthropogenic CO2 emissions in the atmosphere due to fossil fuel combustion for electricity generation. For GCS, the saline aquifer geological carbon sequestration is considered very attractive compared to other options because of their huge sequestration capacity in U.S. and other parts of the world. However, in order to fully exploit their potential, the injection strategies need to be investigated that can address the issues of both the CO2 storage efficiency and safety along with their economic feasibility. Numerical simulations can be used to determine these strategies before the deployment of full scale sequestration in saline aquifers. This paper presents the numerical simulations of CO2 sequestration in three large identified saline aquifers (Mt. Simon, Frio, Utsira) where the sequestration is currently underway or has recently been completed (in case of Frio). The numerical simulations are in acceptable agreement with the seismic data available for plume migration. The results of large scale history-matching simulation in Mt. Simon, Frio, and Utsira formations provide important insights in the uncertainties associated with the numerical modeling of saline aquifer GCS.


2019 ◽  
Vol 8 (6) ◽  
pp. e12861023 ◽  
Author(s):  
Pedro Junior Zucatelli ◽  
Ana Paula Meneguelo ◽  
Gisele de Lorena Diniz Chaves ◽  
Gisele de Lorena Diniz Chaves ◽  
Marielce de Cassia Ribeiro Tosta

The integrity of natural systems is already at risk because of climate change caused by the intense emissions of greenhouse gases in the atmosphere. The goal of geological carbon sequestration is to capture, transport and store CO2 in appropriate geological formations. In this review, we address the geological environments conducive to the application of CCS projects (Carbon Capture and Storage), the phases that make up these projects, and their associated investment and operating costs. Furthermore it is presented the calculations of the estimated financial profitability of different types of projects in Brazil. Using mathematical models, it can be concluded that the Roncador field presents higher gross revenue when the amount of extra oil that can be retrieved is 9.3% (US$ 48.55 billions approximately in 2018). Additional calculations show that the Paraná saline aquifer has the highest gross revenue (US$ 6.90 trillions in 2018) when compared to the Solimões (US$ 3.76 trillions approximately in 2018) and Santos saline aquifers (US$ 2.21 trillions approximately in 2018) if a CCS project were to be employed. Therefore, the proposed Carbon Capture and Storage method in this study is an important scientific contribution for reliable large-scale CO2 storage in Brazil.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 80 ◽  
Author(s):  
Parvaneh Heidari ◽  
Hassan Hassanzadeh

Long-term geological storage of CO2 in deep saline aquifers offers the possibility of sustaining access to fossil fuels while reducing emissions. However, prior to implementation, associated risks of CO2 leakage need to be carefully addressed to ensure safety of storage. CO2 storage takes place by several trapping mechanisms that are active on different time scales. The injected CO2 may be trapped under an impermeable rock due to structural trapping. Over time, the contribution of capillary, solubility, and mineral trapping mechanisms come into play. Leaky faults and fractures provide pathways for CO2 to migrate upward toward shallower depths and reduce the effectiveness of storage. Therefore, understanding the transport processes and the impact of various forces such as viscous, capillary and gravity is necessary. In this study, a mechanistic model is developed to investigate the influence of the driving forces on CO2 migration through a water saturated leakage pathway. The developed numerical model is used to determine leakage characteristics for different rock formations from a potential CO2 storage site in central Alberta, Canada. The model allows for preliminary analysis of CO2 leakage and finds applications in screening and site selection for geological storage of CO2 in deep saline aquifers.


2011 ◽  
Vol 4 ◽  
pp. 4371-4378 ◽  
Author(s):  
J.T. Birkholzer ◽  
Q. Zhou ◽  
A. Cortis ◽  
S. Finsterle

Sign in / Sign up

Export Citation Format

Share Document