A Hybrid Optimization Methodology Identifying Optimal Operating Conditions for Carbon Dioxide Injection in Geologic Carbon Sequestration

2020 ◽  
Vol 98 ◽  
pp. 103067
Author(s):  
Jize Piao ◽  
Weon Shik Han ◽  
Peter K. Kang ◽  
Baehyun Min ◽  
Kue-Young Kim ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3324 ◽  
Author(s):  
Bou Malham ◽  
Zoughaib ◽  
Tinoco ◽  
Schuhler

In the light of the alarming impending energy scene, energy efficiency and exergy efficiency are unmistakably gathering momentum. Among efficient process design methodologies, literature suggests pinch analysis and exergy analysis as two powerful thermodynamic methods, each showing certain drawbacks, however. In this perspective, this article puts forward a methodology that couples pinch and exergy analysis in a way to surpass their individual limitations in the aim of generating optimal operating conditions and topology for industrial processes. Using new optimizing exergy‐based criteria, exergy analysis is used not only to assess the exergy but also to guide the potential improvements in industrial processes structure and operating conditions. And while pinch analysis considers only heat integration to satisfy existent needs, the proposed methodology allows including other forms of recoverable exergy and explores new synergy pathways through conversion systems. A simple case study is proposed to demonstrate the applicability and efficiency of the proposed method.


Author(s):  
Curtis Wettstein

As of November 2007, 174 parties had ratified the Kyoto protocol signifying a large part of the solution to one of the worlds primary environmental problems; carbon dioxide emissions. Although the United States refused to sign the protocol, their neighbours in Canada were eager to address the issue and sign. However with oil being a major Canadian export, carbon dioxide emission reduction was arguably improbable and unprofitable. With the pressure of reducing carbon dioxide emissions an imminent, carbon sequestration may be the symbiotic solution in satisfying Kyoto, saving the environment and even increasing profitability. Carbon sequestration is the process where carbon dioxide is injected into an oil well in order to increase recovery. With tertiary oil recoveries driving much of the oil business, cheap and efficient recovery methods are invaluable. Presently there is a Canadian operation in Wayburn, Saskatchewan which employs the technique. In addition, Texas and Scandinavian oil companies are using Carbon dioxide injection. If carbon sequestration increases oil recovery it has to be the preferred method. By purchasing carbon dioxide from external sources and recycling their own, companies can reduce emissions while increasing profits. Finally it may be profitable to save the environment. 


2018 ◽  
Vol 122 (16) ◽  
pp. 4566-4572 ◽  
Author(s):  
Pradeep N. Perera ◽  
Hang Deng ◽  
P. James Schuck ◽  
Benjamin Gilbert

2019 ◽  
Vol 2 (3) ◽  
pp. 141-151
Author(s):  
O. E. Gnezdova ◽  
E. S. Chugunkova

Introduction: greenhouses need microclimate control systems to grow agricultural crops. The method of carbon dioxide injection, which is currently used by agricultural companies, causes particular problems. Co-generation power plants may boost the greenhouse efficiency, as they are capable of producing electric energy, heat and cold, as well as carbon dioxide designated for greenhouse plants.Methods: the co-authors provide their estimates of the future gas/electricity rates growth in the short term; they have made a breakdown of the costs of greenhouse products, and they have also compiled the diagrams describing electricity consumption in case of traditional and non-traditional patterns of power supply; they also provide a power distribution pattern typical for greenhouse businesses, as well as the structure and the principle of operation of a co-generation unit used by a greenhouse facility.Results and discussion: the co-authors highlight the strengths of co-generation units used by greenhouse facilities. They have also identified the biological features of carbon dioxide generation and consumption, and they have listed the consequences of using carbon dioxide to enrich vegetable crops.Conclusion: the co-authors have formulated the expediency of using co-generation power plants as part of power generation facilities that serve greenhouses.


2003 ◽  
Vol 2 (3) ◽  
pp. 287 ◽  
Author(s):  
Curtis M. Oldenburg ◽  
André J. A. Unger

Sign in / Sign up

Export Citation Format

Share Document