Numerical investigation of flow through a triangular duct: The coexistence of laminar and turbulent flow

Author(s):  
Gertraud Daschiel ◽  
Bettina Frohnapfel ◽  
Jovan Jovanović
2013 ◽  
Vol 334-335 ◽  
pp. 322-328 ◽  
Author(s):  
Ana Serrenho ◽  
Antonio F. Miguel

The present study focuses on fluid flow and particle transport in symmetric T-shaped structures formed by tubes with circular and square cross-section. The performances of optimized structures (i.e., structures designed based on constructal allometric laws for minimum flow resistance) and not optimized structures were studied. Flow resistance and particle penetration efficiency were studied both for laminar and turbulent flow regimes, and for micrometer and submicrometer particles. Optimized structures have been proven to perform better for fluid flow but they have a similar performance for particle transport.


Engineering ◽  
2017 ◽  
Vol 09 (05) ◽  
pp. 412-426 ◽  
Author(s):  
Hans O. Åkerstedt ◽  
Sebastian Eller ◽  
T. Staffan Lundström

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Cemal Benim ◽  
Sai Bhagavan Maddala

Purpose The purpose of this paper is the numerical investigation of the friction laws for incompressible flow in undulated channels, with emphasis on the applicability of the hydraulic diameter concept. A focal point of the study is the derivation of correlations to increase the accuracy of the hydraulic diameter approach. Design/methodology/approach Calculations are performed for laminar and turbulent flow, for Reynolds number ranges between 10–2,000 and 5,000–100,000. For turbulent flow, the shear stress transport (SST) model is used. A simple, sawtooth-like undulation shape is considered, where the channel geometry can be described by means of three length parameters. Letting each to take three values, totally 27 geometries are analyzed. Findings It is observed that the hydraulic diameter concept applied via analytical or empirical expressions to obtain friction coefficients does not lead to accurate results. For laminar flow, the maximum deviations of analytical values from predicted are about 70%, while 20% deviation is observed on average. For turbulent flow, deviations of Blasius correlation from predicted ones are smaller, but still remarkable with about 20% for maximum deviation and about 10% on average. Originality/value Applicability of the hydraulic diameter concept to undulated channels was not computationally explored. A further original ingredient of the work is the derivation of correlations that lead to improved accuracy in calculating the friction coefficient using hydraulic diameter. For laminar flow, the maximum and average deviations of present correlations from numerical predictions are below 5% and 2%, respectively. For turbulent flow, these numbers turn out to be approximately 12% for the maximum deviation and about 2% for the average.


Sign in / Sign up

Export Citation Format

Share Document