INVESTIGATION OF LAMINAR AND TURBULENT FLOW THROUGH AN ORIFICE PLATE INSERTED IN A PIPE

2004 ◽  
Vol 28 (2B) ◽  
pp. 403-414 ◽  
Author(s):  
Tural Tunay ◽  
Besir Sahin ◽  
Huseyin Akilli
2013 ◽  
Vol 334-335 ◽  
pp. 322-328 ◽  
Author(s):  
Ana Serrenho ◽  
Antonio F. Miguel

The present study focuses on fluid flow and particle transport in symmetric T-shaped structures formed by tubes with circular and square cross-section. The performances of optimized structures (i.e., structures designed based on constructal allometric laws for minimum flow resistance) and not optimized structures were studied. Flow resistance and particle penetration efficiency were studied both for laminar and turbulent flow regimes, and for micrometer and submicrometer particles. Optimized structures have been proven to perform better for fluid flow but they have a similar performance for particle transport.


Author(s):  
Guang Yin ◽  
Bjørnar Nitter ◽  
Muk Chen Ong

Abstract Orifice flow meters are widely used in industries to measure the flow rate in pipelines. The flow rate inside the pipe can be calculated using the relationship between the flow velocity and the pressure drop across the orifice plate. In the present study, numerical simulations have been carried out using three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations combined with the k-ω SST turbulence model to thoroughly investigate the turbulent flow through a circular square-edged orifice with various orifice plate thicknesses and orifice diameters inside a pipe at different Reynolds numbers ranging from 2500 to 40000. The orifice thickness to pipe diameter ratio (t) varies between 0.125 and 2 and the orifice diameter to pipe diameter (ß) varies between 0.25 and 0.75. The resulting centerline profiles of the streamwise velocity and pressure of the present study are compared with the previous published numerical results and experimental data as the validation study. The effects of Reynolds numbers and orifice geometries on the pressure, the flow velocity and vorticity distribution in the orifice are discussed in detail. It is found that for the fixed ß, the discharge coefficient increases with the increasing t and the vortical structure inside the orifice is separated into two regions located at the two edges of the orifice. For the fixed t, the size of the large recirculation motions behind the plate increases and the vorticity around the plate becomes stronger with the decreasing ß.


1962 ◽  
Vol 84 (1) ◽  
pp. 82-88 ◽  
Author(s):  
J. P. Hartnett ◽  
J. C. Y. Koh ◽  
S. T. McComas

The friction coefficient for both laminar and turbulent flow through rectangular channels was analytically and experimentally studied. The analytic expression for the pressure loss in fully established laminar flow was verified by experiment. In turbulent flow, the method of Deissler and Taylor was used to calculate the friction coefficient. The calculated and measured results were in agreement for ducts having large aspect ratios. At aspect ratios less than 5:1, the predicted values of the friction factors were lower than the experimental data, with a maximum difference of 12 per cent evident for the square duct. It was found that the circular-tube correlation accurately predicts the friction coefficient for flow through rectangular ducts of any aspect ratio for Reynolds numbers between 6 × 103 and 5 × 105. Hydrodynamic entrance-length results are also presented in the laminar and turbulent flow ranges for both a smooth and an abrupt entrance configuration.


2020 ◽  
Author(s):  
Guang Yin ◽  
Bjørnar Nitter ◽  
Muk Chen Ong

Abstract Orifice flow meters are widely used in industries to measure the flow rate in pipelines. The flow rate inside the pipe can be calculated using the relationship between the flow velocity and the pressure drop across the orifice plate. In the present study, numerical simulations have been carried out using three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations combined with the k-ω SST turbulence model to thoroughly investigate the turbulent flow through a circular square-edged orifice with various orifice plate thicknesses and orifice diameters inside a pipe at different Reynolds numbers ranging from 2500 to 40000. The orifice thickness to pipe diameter ratio (t) varies between 0.125 and 2 and the orifice diameter to pipe diameter (β) varies between 0.25 and 0.75. The resulting centerline profiles of the streamwise velocity and pressure of the present study are compared with the previous published numerical results and experimental data as the validation study. The effects of Reynolds numbers and orifice geometries on the pressure, the flow velocity and vorticity distribution in the orifice are discussed in detail.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012019
Author(s):  
A P Jurga ◽  
M J Janocha ◽  
G Yin ◽  
K E T Giljarhus ◽  
M C Ong

Abstract In the present study, numerical simulations using different Reynolds-Averaged Navier–Stokes (RANS) turbulence models are carried out to investigate the turbulent flow through the orifice plate at Reynolds number (Re) of 23000. The orifice thickness to pipe diameter ratio (t) and the orifice diameter to pipe diameter ratio (β) are fixed and equal to 0.1 and 0.5, respectively. The objective is to evaluate the behaviour of various RANS models with respect to the relevant flow parameters such as the pressure drop, velocity distributions and turbulence intensity profiles in the pipe by comparing the results with available published experimental data. The following turbulence models are studied: the k – ε, the k – ε Low Re, the k – ε RNG, the k – ε Realizable, the k – ω SST, the γ – SST, the EARSM and the k – ε Cubic models. It is found that based on the validation study of the flow through the orifice plate, the following models are in good agreement with experimental measurements: the k – ω SST, the γ – SST and the EARSM. They show a better performance than the k – ε model family in predicting the flow features which are important for the orifice flowmeter design.


2018 ◽  
Vol 16 (01) ◽  
pp. 1850086 ◽  
Author(s):  
Nasrin Sheikhi ◽  
Mohammad Najafi ◽  
Vali Enjilela

The aim of this paper is to extend the meshless local Petrov–Galerkin method to solve stabilized turbulent fluid flow problems. For the unsteady incompressible turbulent fluid flow problems, the Spalart–Allmaras model is used to stabilize the governing equations, and the meshless local Petrov–Galerkin method is extended based on the vorticity-stream function to solve the turbulent flow problems. In this study, the moving least squares scheme interpolates the field variables. The proposed method solves three standard test cases of the turbulent flow over a flat plate, turbulent flow through a channel, and turbulent flow over a backward-facing step for evaluation of the method’s capability, accuracy, and validity purposes. Based on the comparison of the three test cases results with those of the experimental and conventional numerical works available in the literature, the proposed method shows to be accurate and quite implemental. The new extended method in this study together with the previously published works of the authors (on extending the meshless local Petrov–Galerkin method to solve laminar flow problems) now, for the first time, empower the meshless method to solve both laminar and turbulent flow problems.


Sign in / Sign up

Export Citation Format

Share Document