particle penetration
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 35)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 115 ◽  
pp. 103670
Author(s):  
A. Marchewicz ◽  
A.T. Sobczyk ◽  
A. Krupa ◽  
Ł. Śliwiński ◽  
A. Jaworek

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0246916
Author(s):  
Sean M. Kinahan ◽  
David B. Silcott ◽  
Blake E. Silcott ◽  
Ryan M. Silcott ◽  
Peter J. Silcott ◽  
...  

The COVID-19 pandemic has reintroduced questions regarding the potential risk of SARS-CoV-2 exposure amongst passengers on an aircraft. Quantifying risk with computational fluid dynamics models or contact tracing methods alone is challenging, as experimental results for inflight biological aerosols is lacking. Using fluorescent aerosol tracers and real time optical sensors, coupled with DNA-tagged tracers for aerosol deposition, we executed ground and inflight testing on Boeing 767 and 777 airframes. Analysis here represents tracer particles released from a simulated infected passenger, in multiple rows and seats, to determine the exposure risk via penetration into breathing zones in that row and numerous rows ahead and behind the index case. We present here conclusions from 118 releases of fluorescent tracer particles, with 40+ Instantaneous Biological Analyzer and Collector sensors placed in passenger breathing zones for real-time measurement of simulated virus particle penetration. Results from both airframes showed a minimum reduction of 99.54% of 1 μm aerosols from the index source to the breathing zone of a typical passenger seated directly next to the source. An average 99.97 to 99.98% reduction was measured for the breathing zones tested in the 767 and 777, respectively. Contamination of surfaces from aerosol sources was minimal, and DNA-tagged 3 μm tracer aerosol collection techniques agreed with fluorescent methodologies.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6564
Author(s):  
Maya Alexandrovna Dymova ◽  
Yaroslav Alexandrovich Utkin ◽  
Maria Denisovna Dmitrieva ◽  
Elena Vladimirovna Kuligina ◽  
Vladimir Alexandrovich Richter

Background: Tumor-targeting bacteriophages can be used as a versatile new platform for the delivery of diagnostic imaging agents and therapeutic cargo. This became possible due to the development of viral capsid modification method. Earlier in our laboratory and using phage display technology, phages to malignant breast cancer cells MDA-MB 231 were obtained. The goal of this study was the optimization of phage modification and the assessment of the effect of the latter on the efficiency of phage particle penetration into MDA-MB 231 cells. Methods: In this work, we used several methods, such as chemical phage modification using FAM-NHS ester, spectrophotometry, phage amplification, sequencing, phage titration, flow cytometry, and confocal microscopy. Results: We performed chemical phage modification using different concentrations of FAM-NHS dye (0.5 mM, 1 mM, 2 mM, 4 mM, 8 mM). It was shown that with an increase of the modification degree, the phage titer decreases. The maximum modification coefficient of the phage envelope with the FAM–NHS dye was observed with 4 mM modifying agent and had approximately 804,2 FAM molecules per phage. Through the immunofluorescence staining and flow cytometry methods, it was shown that the modified bacteriophage retains the ability to internalize into MDA-MB-231 cells. The estimation of the number of phages that could have penetrated into one tumor cell was conducted. Conclusions: Optimizing the conditions for phage modification can be an effective strategy for producing tumor-targeting diagnostic and therapeutic agents, i.e., theranostic drugs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258191
Author(s):  
Scott Duncan ◽  
Paul Bodurtha ◽  
Syed Naqvi

Face coverings are a key component of preventive health measure strategies to mitigate the spread of respiratory illnesses. In this study five groups of masks were investigated that are of particular relevance to the SARS-CoV-2 pandemic: re-usable, fabric two-layer and multi-layer masks, disposable procedure/surgical masks, KN95 and N95 filtering facepiece respirators. Experimental work focussed on the particle penetration through mask materials as a function of particle diameter, and the total inward leakage protection performance of the mask system. Geometric mean fabric protection factors varied from 1.78 to 144.5 for the fabric two-layer and KN95 materials, corresponding to overall filtration efficiencies of 43.8% and 99.3% using a flow rate of 17 L/min, equivalent to a breathing expiration rate for a person in a sedentary or standing position conversing with another individual. Geometric mean total inward leakage protection factors for the 2-layer, multi-layer and procedure masks were <2.3, while 6.2 was achieved for the KN95 masks. The highest values were measured for the N95 group at 165.7. Mask performance is dominated by face seal leakage. Despite the additional filtering layers added to cloth masks, and the higher filtration efficiency of the materials used in disposable procedure and KN95 masks, the total inward leakage protection factor was only marginally improved. N95 FFRs were the only mask group investigated that provided not only high filtration efficiency but high total inward leakage protection, and remain the best option to protect individuals from exposure to aerosol in high risk settings. The Mask Quality Factor and total inward leakage performance are very useful to determine the best options for masking. However, it is highly recommended that testing is undertaken on prospective products, or guidance is sought from impartial authorities, to confirm they meet any implied standards.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1727
Author(s):  
Konstantin Mikhailovich Fedorov ◽  
Alexander Yanovich Gilmanov ◽  
Alexander Pavlovich Shevelev ◽  
Alexander Vyacheslavovich Kobyashev ◽  
Denis Alekseevich Anuriev

This study is focused on a solution for the problem of suspension penetration in a porous formation. Such a solution forms the basis of injection profile diversion technology for oil reservoir sweep improvement. A conventional model of deep-bed suspension flow was used to describe the suspension injection process. The suspension slug was followed by water injection, and the inflow injection profile before and after treatment was investigated. For the first time, the criteria that determine the effectiveness of the inflow profile improvement process are introduced. The effect of the suspension filtration coefficient on the particle penetration depth was studied. A specific filtration coefficient value for the maximum penetration depth was achieved. The obtained analytical solution was generalized on multi-reservoir strata with poor interlayer crosslinking. The efficiency of profile conformance improvement was described by the differences in the root-mean-square deviations of the inflow velocities in interlayers from mean values before and after the treatment. It was shown that the complex criterion of suspension treatment efficiency should include a reduction in total injectivity. An increase in suspension slug volume improves the injectivity profile but decreases the total injectivity of an injector.


2021 ◽  
Vol 13 (13) ◽  
pp. 7382
Author(s):  
Ye Seul Eom ◽  
Bo Ram Park ◽  
Hee Won Shin ◽  
Dong Hwa Kang

We analyzed the effects of air leakage and other building characteristics on outdoor particle penetration in classrooms. The building characteristics including air leakage of 12 Korean schools were investigated, and onsite measurements were conducted to estimate the outdoor particle infiltration. The correlations among variables associated with air leakage and building characteristics and outdoor particle infiltration were analyzed using the Pearson correlation analysis and linear regression. The effective leakage area (ELA) of classrooms varied highly from 340.8–1566.9 cm2, and a significant disparity in the air leakage characteristics among the classrooms appeared. The results of onsite measurement revealed that the average ELA was larger in the corridor side with an ELAcorridor-side of 264.7 cm2 than in the outdoor side (ELAoutdoor-side of 93.1 cm2). Results of correlation analysis indicated a high correlation (r = 0.68~0.78, p-value < 0.05) between the size resolved outdoor particle source (P × λ) and specific ELA. Particularly, a strong linear relation (R2 = 0.69~0.71) with specific ELAcorridor-side was seen. Results suggest that cracks between windows and doors in the corridor side considerably affect outdoor particle penetration. These results indicate the importance of improving the airtightness of not only the building envelope but also the inter-zonal walls for effectively reducing the outdoor particle infiltration into classrooms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Carolina Ontiveros ◽  
Crystal L. Sweeney ◽  
Christopher Smith ◽  
Sean MacIsaac ◽  
Jessica L. Bennett ◽  
...  

AbstractDuring the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs) were recommended to protect healthcare workers when providing care to infected patients. Despite their single-use disposable nature, the need to disinfect and repurpose FFRs is paramount during this global emergency. The objectives of this study were to (1) determine if UV treatment has an observable impact on respirator integrity; (2) test the impact of UV treatment on N95 FFR user fit; and (3) test the impact of UV treatment on FFR integrity. Ultraviolet (UV) disinfection was assessed in maintaining N95 FFR integrity. Two models of FFRs were exposed to UV fluences ranging from 0 to 10,000 mJ cm−2 per side and subsequently tested for fit, respirator integrity, and airflow. Inspection of N95 FFRs before and after UV treatment via microscopy methods showed no observable or tactile abnormalities in the integrity of respirator material or straps. Tensile loading tests on UV-treated and untreated respirator straps also demonstrated no impact on breaking strength. Standardized fit test methods showed no compromise in user fit following UV treatment. Evaluation of particle penetration and airflow through N95 FFRs showed no impact on integrity, and average filtration efficiency did not fall below 95% for any of the respirator types or fluence levels. This work provides evidence that UV disinfection does not compromise N95 FFR integrity at UV fluences up to 10,000 mJ cm−2. UV disinfection is a viable treatment option to support healthcare professionals in their strategy against the spread of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document